Difference between revisions of "ButtonBoxes"

From TSG Doc
Jump to navigation Jump to search
 
(116 intermediate revisions by 7 users not shown)
Line 1: Line 1:
== General ==
+
{{Infobox tsg
 +
| name          = Buttonbox (2018)
 +
| image          = Buttonbox_2018_1.png
 +
| caption        = 2018 Buttonbox
 +
| downloads      = {{bulleted list
 +
      | [https://surfdrive.surf.nl/files/index.php/s/PPTKCyrjLkN4XUO Buttonbox 2018]
 +
      | [https://pypi.python.org/pypi/RuSocSci RuSocSci] (Python package)
 +
  }}
 +
}}
 +
{{Infobox tsg
 +
| name          = Buttonbox
 +
| image          = Buttonbox 03s.png
 +
| caption        = 2013 Buttonbox
 +
| downloads      = {{bulleted list
 +
      | [https://surfdrive.surf.nl/files/index.php/s/72XEcu2XKSgzxjp Buttonbox 2015]
 +
      | [https://pypi.python.org/pypi/RuSocSci RuSocSci] (Python package)
 +
  }}
 +
}}
  
The buttonbox is used for time accurate(1ms) button press registration. We use it to register buttonpresses, soundkey, voicekey signals and to send tone onset, analog output, triggers with the BITSI protocol. It is suitable for Behavioral, EEG, MEG, and fMRI experiments. The buttonbox is connected to a computer with a usb connection.
+
The buttonbox is used for time accurate(1ms) button press registration. We use it to register buttonpresses, soundkey, voicekey signals and to send tone onset, analog output, triggers with the BITSI protocol. It is suitable for Behavioral, EEG, MEG, and fMRI experiments. The buttonbox is connected to a computer with a usb connection.
  
The output connector has two binary eight bit ports: input and output. The two ports can be used for responses (input) and stimulus triggers (output). Two 8 bits analog outputs and three 8 bits analog inputs. The output connector has a sound and voicekey which triggers when a amplitude reaches a threshold. By using the serial port, the BITSI can be used platform independently: it works on Windows, Linux and Mac OSX. Most programming environments and stimulus packages support serial communication. 
+
The output connector has two binary eight bit ports: input and output. The two ports can be used for responses (input) and stimulus triggers (output). Two 12 bits analog outputs and three 12 bits analog inputs. The output connector has a sound and voicekey which triggers when a amplitude reaches a threshold. By using the serial port, the BITSI can be used platform independently: it works on Windows, Linux and Mac OSX. Most programming environments and stimulus packages support serial communication.
 +
 
 +
There is currently a [[Microsoft Windows driver issue]].
  
 
== BITSI Protocol ==
 
== BITSI Protocol ==
  
BITSI stands for Bits to Serial Interface. Because the BITSI is designed to interface both in- and output signals, the 'protocol' is asymmetric: the input and output protocols differ. 
+
BITSI stands for Bits to Serial Interface. Because the BITSI is designed to interface both in- and output signals, the 'protocol' is asymmetric: the input and output protocols differ.
  
<u>'''Input'''</u>
+
===Input===
  
 
The input port can be used to interface eight buttons maximally. Button presses are translated to serial output characters/bytes according to the following table:
 
The input port can be used to interface eight buttons maximally. Button presses are translated to serial output characters/bytes according to the following table:
  
{| border="1" cellspacing="0" cellpadding="0" width="462" style="width:462px;"
+
{| class="wikitable"  
 +
|-
 +
! scope="row" colspan="3" | BITSI Simple
 
|-
 
|-
| style="width:113px;height:22px;" |  
+
! scope="row" width="120px" | Signal/Button
'''Signal / Button'''
+
! scope="row" width="120px" | ASCII (rise/fall)
 
+
! scope="row" width="120px" | Code (rise/fall)
| style="width:170px;height:22px;" |  
 
'''ASCII''' (rising / falling)
 
 
 
| style="width:180px;height:22px;" |  
 
'''Code''' (rising / falling)
 
 
 
 
|-
 
|-
| style="width:113px;height:22px;" |
+
| 1 || A / a || 65 / 97
1
 
 
 
| style="width:170px;height:22px;" |  
 
A / a
 
 
 
| style="width:180px;height:22px;" |  
 
65 / 97
 
 
 
|-
 
| style="width:113px;height:22px;" |
 
2
 
 
 
| style="width:170px;height:22px;" |
 
B / b
 
 
 
| style="width:180px;height:22px;" |
 
66 / 98
 
 
 
 
|-
 
|-
| style="width:113px;height:22px;" |  
+
| 2 || B / b || 66 / 98
3
 
 
 
| style="width:170px;height:22px;" |
 
C / c
 
 
 
| style="width:180px;height:22px;" |  
 
67 / 99
 
 
 
 
|-
 
|-
| style="width:113px;height:22px;" |  
+
| 3 || C / c || 67 / 99
4
 
 
 
| style="width:170px;height:22px;" |
 
D / d
 
 
 
| style="width:180px;height:22px;" |  
 
68 / 100
 
 
 
 
|-
 
|-
| style="width:113px;height:22px;" |  
+
| 4 || D / d || 68 / 100
5
 
 
 
| style="width:170px;height:22px;" |
 
E / e
 
 
 
| style="width:180px;height:22px;" |  
 
69 / 101
 
 
 
 
|-
 
|-
| style="width:113px;height:22px;" |  
+
| 5 || E / e || 69 / 101
6
 
 
 
| style="width:170px;height:22px;" |
 
F / f
 
 
 
| style="width:180px;height:22px;" |  
 
70 / 102
 
 
 
 
|-
 
|-
| style="width:113px;height:22px;" |  
+
| 6 || F / f || 70 / 102
7
 
 
 
| style="width:170px;height:22px;" |
 
G / g
 
 
 
| style="width:180px;height:22px;" |  
 
71 / 103
 
 
 
 
|-
 
|-
| style="width:113px;height:22px;" |  
+
| 7 || G / g || 71 / 103
8
 
 
 
| style="width:170px;height:22px;" |
 
H / h
 
 
 
| style="width:180px;height:22px;" |  
 
72 / 104
 
 
 
 
|-
 
|-
| style="width:113px;height:22px;" |  
+
| 8 || H / h || 72 / 104
SoundKey
 
 
 
| style="width:170px;height:22px;" |
 
S / s
 
 
 
| style="width:180px;height:22px;" |  
 
83 / 115
 
 
 
 
|-
 
|-
| style="width:113px;height:22px;" |
 
VoiceKey
 
 
| style="width:170px;height:22px;" |
 
V / v
 
 
| style="width:180px;height:22px;" |
 
86 / 118
 
 
 
|}
 
|}
  
This means that when signal 1 gets /activated?, a capital A will be sent to the serial port. A lowercase 'a' will be sent when the signal is deactivated?. Mechanical buttons can be connected directly.
+
This means that when signal 1 gets active(button press), a capital A will be sent to the serial port. A lowercase 'a' will be sent when the signal is deactivated(button release). Mechanical buttons can be connected directly.
  
<u>'''Output'''</u>
+
===Output===
  
Output knows two protocols: BITSI simple or BITSI extended. To enter a certain protocol two buttons have to be pressed when the BITSIbox is powered. Press button H and A for simple mode and H and B for extended mode.
+
Output knows two protocols: '''BITSI simple''' or '''BITSI extended'''. To enter a certain protocol two buttons have to be pressed when the BITSIbox is powered or com port opens. '''[2015]Press button H and A for simple mode and H and B for extended mode. [2018]Press button E and A for simple mode and E and B for extended mode.'''
  
 
If no button is pressed when powered it boots the last known protocol. In the simple protocol every byte sent to the BITSI over the serial port, is represented at the 8 bit output.
 
If no button is pressed when powered it boots the last known protocol. In the simple protocol every byte sent to the BITSI over the serial port, is represented at the 8 bit output.
  
The '''extended''' protocol uses two bytes?, this combination can access two analog outputs and a tone generator. The first byte selects the output. The second byte determines the value written to this output.
+
The '''extended''' protocol uses two bytes(or two characters), this combination can access two analog outputs and a tone generator. The first byte selects the output. The second byte determines the value written to this output.
  
 
+
{| class="wikitable" 
 
+
|-
{| border="1" cellspacing="0" cellpadding="0" width="434" style="width:434px;"
+
! scope="row" colspan="3" | BITSI Extended
 +
|-
 +
! scope="row" width="120px" | Function
 +
! scope="row" width="150px" | Byte 1 (ASCII/code)
 +
! scope="row" width="150px" | Byte 2
 +
|-
 +
| Marker Out || M / 77 || Marker Value
 +
|-
 +
| Pulse Out || P / 80 || Marker Value
 
|-
 
|-
| style="width:122px;height:22px;" |  
+
| Pulse Time || X / 88 || ms before pulse reset
'''Function'''
 
 
 
| style="width:161px;height:22px;" |
 
'''Byte 1 (ASCII / code)'''
 
 
 
| style="width:151px;height:22px;" |  
 
'''Byte 2'''
 
 
 
 
|-
 
|-
| style="width:122px;height:22px;" |  
+
| Analog Out 1 || Y / 89 || Analog Output Value
Marker out
 
 
 
| style="width:161px;height:22px;" |
 
M / 77
 
 
 
| style="width:151px;height:22px;" |  
 
Marker value
 
 
 
 
|-
 
|-
| style="width:122px;height:22px;" |
+
| Analog Out 2 || Z / 90 || Analog Output Value
Analog out 1
 
 
 
| style="width:161px;height:22px;" |  
 
Y / 89
 
 
 
| style="width:151px;height:22px;" |  
 
Analog output value
 
 
 
 
|-
 
|-
| style="width:122px;height:22px;" |  
+
| Tone || T / 84 || Start Tone
Analog out 2
 
 
 
| style="width:161px;height:22px;" |
 
Z / 90
 
 
 
| style="width:151px;height:22px;" |  
 
Analog output value
 
 
 
 
|-
 
|-
| style="width:122px;height:22px;" |  
+
| Detect Sound || D / || S / 83
Tone
 
 
 
| style="width:161px;height:22px;" |
 
T / 84
 
 
 
| style="width:151px;height:22px;" |  
 
Start tone
 
 
 
 
|-
 
|-
| style="width:122px;height:22px;" |
+
| Detect Voice || D / || V / 83
Detect Sound
 
 
 
| style="width:161px;height:22px;" |  
 
D
 
 
 
| style="width:151px;height:22px;" |  
 
S / 83
 
 
 
 
|-
 
|-
| style="width:122px;height:22px;" |  
+
| Calibrate Sound || C / || S
Detect Voice
 
 
 
| style="width:161px;height:22px;" |
 
D /
 
 
 
| style="width:151px;height:22px;" |  
 
V / 83
 
 
 
 
|-
 
|-
| style="width:122px;height:22px;" |
+
| Calibrate Voice || C / || V
Calibrate Sound
 
 
 
| style="width:161px;height:22px;" |  
 
C /
 
 
 
| style="width:151px;height:22px;" |  
 
S
 
 
 
 
|-
 
|-
| style="width:122px;height:22px;" |  
+
| Analog In 1 || A / || 1
Calibrate Voice
 
 
 
| style="width:161px;height:22px;" |
 
C /
 
 
 
| style="width:151px;height:22px;" |  
 
V
 
 
 
 
|-
 
|-
| style="width:122px;height:22px;" |
+
| Analog In 2 || A / || 2
Analog in 1
 
 
 
| style="width:161px;height:22px;" |  
 
A /
 
 
 
| style="width:151px;height:22px;" |  
 
1
 
 
 
 
|-
 
|-
| style="width:122px;height:22px;" |
+
| Analog In 3 || A / || 3
Analog in 2
 
 
 
| style="width:161px;height:22px;" |  
 
A /
 
 
 
| style="width:151px;height:22px;" |  
 
2
 
 
 
 
|-
 
|-
| style="width:122px;height:22px;" |
+
| Analog In 4 || A / || 4
Analog in 3
 
 
 
| style="width:161px;height:22px;" |  
 
A /
 
 
 
| style="width:151px;height:22px;" |  
 
3
 
 
 
 
|-
 
|-
| style="width:122px;height:22px;" |  
+
| LEDs Off || L / || X
Analog in 4
 
 
 
| style="width:161px;height:22px;" |
 
A /
 
 
 
| style="width:151px;height:22px;" |  
 
4
 
 
 
 
|-
 
|-
| style="width:122px;height:22px;" |
+
| LEDs Input || L / || I
LEDs off
 
 
 
| style="width:161px;height:22px;" |  
 
L /
 
 
 
| style="width:151px;height:22px;" |  
 
X
 
 
 
 
|-
 
|-
| style="width:122px;height:22px;" |
+
| LEDs Output || L / || O
LEDs input
 
 
 
| style="width:161px;height:22px;" |  
 
L /
 
 
 
| style="width:151px;height:22px;" |  
 
I
 
 
 
 
|-
 
|-
| style="width:122px;height:22px;" |
+
|}
LEDs output
 
 
 
| style="width:161px;height:22px;" |
 
L /
 
  
| style="width:151px;height:22px;" |
+
== Port Settings ==
O
 
  
|}
+
===Trigger port ===
  
<u>'''Trigger port settings'''</u>
+
[[File:Connector.png|thumb|300x300px|Schematic view of the 25 pins connector]]
  
[[File:Connector.png|300x300px|Connector.png]]
+
The 25 pins female connector has 8 inputs and 8 outputs, respectively 1-8 are inputs and 9-16 are outputs. Three analog input with an analog to digital convertor of 12 bit, pins 17,18,20 and 21. Two analog outputs with an digital to analog convertor of 12 bits on pins 22 and 23.
  
The 25 pins female connector has 8 inputs and 8 outputs, respectively 1-8 are inputs and 9-16 are outputs. Three analog input with an analog to digital convertor of 12 bit, pins 17,18,20 and 21. Two analog outputs with an digital to analog convertor of 12 bits on pins 22 and 23.
+
The inputs 1-8 will be pulled down from 5V to GND when the buttons are pressed. The outputs 9-16 will be pulled up from GND to 5V when the output is activated.
  
<u>'''Serial port settings'''</u>
+
===Serial port===
  
Our hardware design allows to be connected to the computers USB and emulates a serial [[Port]].
+
Our hardware design allows to be connected to the computers USB and emulates a serial communication Port.
  
{| border="1" cellpadding="0"
+
{| class="wikitable"
 
|-
 
|-
|  
+
| Baudrate || 115200
'''Baudrate'''
+
|-
 
+
| Parity || None
| style="width:69px;" |  
 
115200
 
 
 
 
|-
 
|-
|  
+
| Data bits || 8
'''Parity'''
 
 
 
| style="width:69px;" |  
 
none
 
 
 
 
|-
 
|-
|  
+
| Stop bits || 1
'''Data bits'''
 
 
 
| style="width:69px;" |  
 
8
 
 
 
 
|-
 
|-
|  
+
| Flow control || None
'''Stop bits'''
 
 
 
| style="width:69px;" |  
 
1
 
 
 
 
|-
 
|-
|
 
'''Flow control'''
 
 
| style="width:69px;" |
 
none
 
 
 
|}
 
|}
  
== USB-Com port settings ==
+
=== USB-Com port ===
  
 
1.Connect the BITSIbox to your computer using the USB cable.
 
1.Connect the BITSIbox to your computer using the USB cable.
Line 385: Line 176:
 
Always connect the usb device to the same port and your settings will be remembered.
 
Always connect the usb device to the same port and your settings will be remembered.
  
== TSG ButtonBox hardware 2013 ==
+
== Software Settings ==
  
Find the hardware design here&nbsp;[[Buttonbox 2013 Hardware|Buttonbox_2013_Hardware]]
+
=== Neurobs Presentation ===
  
== TSG ButtonBox software 2013 ==
+
The experiment files needs a few settings for the device to work:
 +
* In the settings tab:  port -> input port -> 1 must be the device that identifies itself as "Arduino Uno" in the device manager. Note that the port must have a number not higher than 10 (COM1-COM10). Use re-enumerate if it is higher.
 +
* Rate must be set 115200, Parity to None, Data Bits to 8 and Stop Bits to 1, Uncheck FIFO Interrupt.
  
Find the code here&nbsp;[[Buttonbox 2013 Software|Buttonbox_2013_Software]]
+
[[File:Buttonbox2.png]]
  
== Presentation Settings ==
+
'''Testing Buttonbox'''
  
<span lang="EN-US" style="font-size: 12pt; line-height: 115%; font-family: Arial, sans-serif; background-position: initial initial; background-repeat: initial initial;">The experiment files needs a few settings for the device to work:</span><br/><span lang="EN-US" style="font-size: 12pt; line-height: 115%; font-family: Arial, sans-serif;">- In the settings tab:&nbsp; port -> input port -> 1 must be the device that identifies itself as "Arduino Uno" in the device manager. Note that the port must have a number not higher than 10 (COM1-COM10). Use re-enumerate if it is higher.<br/>-<span class="apple-converted-space">&nbsp;</span>''Rate<span class="apple-converted-space">&nbsp;</span>''must be set 115200,<span class="apple-converted-space">&nbsp;</span>''Parity<span class="apple-converted-space">&nbsp;</span>''to None,<span class="apple-converted-space">&nbsp;</span>''Data Bits''<span class="apple-converted-space">&nbsp;</span>to 8 and<span class="apple-converted-space">&nbsp;</span>''Stop Bits''<span class="apple-converted-space">&nbsp;</span>to 1, Uncheck<span class="apple-converted-space">&nbsp;</span>''FIFO Interrupt''.<br/><!--[if !supportLineBreakNewLine]--><br/><!--[endif]--></span>
+
When pressing on the A button within the input channel tester. You will see the following ASCII code.
  
{|
+
[[file:testbuttonbox.png]]
|-
+
 
| [[File:Buttonbox1.png]]
+
'''Adding Marker'''
|}
+
 
 +
[[file:output_buttonbox1.png | 800px]]
 +
 
 +
'''Testing Markers (output)'''
 +
 
 +
Send code 1 for Button A
 +
 
 +
[[file:output_buttonbox2.png]]
 +
 
 +
Button A will light up.
 +
 
 +
[[file:buttonboxledA.png | 200px]]
 +
 
 +
Send code 0 for clearing.
 +
 
 +
[[file:output_buttonbox3.png]]
 +
 
 +
'''Example PCL code you can program a handle to send a marker:'''
 +
 
 +
#handle:
 +
output_port OutputPort = output_port_manager.get_port( 1 );
 +
 
 +
'''Example to send a marker:'''
 +
OutputPort.send_code(100); #create a marker
 +
 
 +
 
 +
for more information see chapter 8 in the presentation course by clicking [http://tsgdoc.socsci.ru.nl/images/9/9e/Programming_with_Presentation_2013.pdf here]
 +
 
 +
=== Python/PsychoPy ===
 +
 
 +
Download this site-package to use the buttonbox: [https://pypi.python.org/pypi/RuSocSci rusocsci]
 +
 
 +
or use in windows command 'pip install --upgrade rusocsci'
 +
 
 +
'''Example using buttons from the buttonbox in Python:'''
 +
 
 +
<syntaxhighlight lang="python" line>
 +
#!/usr/bin/env python
 +
 
 +
# import the rusocsci.buttonbox module
 +
from rusocsci import buttonbox
 +
 
 +
# make a buttonbox
 +
bb = buttonbox.Buttonbox()
 +
 
 +
# wait for a single button press
 +
b = bb.waitButtons()
 +
 
 +
# print the button pressed
 +
print("b: {}".format(b))
 +
</syntaxhighlight>
 +
 
 +
'''Example using markers with the buttonbox in Python:'''
 +
 
 +
<syntaxhighlight lang="python" line>
 +
#!/usr/bin/env python
 +
 
 +
# import the rusocsci.buttonbox module
 +
from rusocsci import buttonbox
 +
 
 +
# make a buttonbox
 +
bb = buttonbox.Buttonbox()
 +
 
 +
# send a marker
 +
bb.sendMarker(val=100)    #This is your marker code, range code 1-255
 +
</syntaxhighlight>
 +
 
 +
'''Example using BITSI extended in Python:'''
 +
 
 +
<syntaxhighlight lang="python" line>
 +
#!/usr/bin/env python
  
== Psychopy Settings ==
+
# import the rusocsci.buttonbox module
 +
from rusocsci import buttonbox
  
<nowiki>
+
# make a buttonbox
#!/usr/bin/env python
+
bb = buttonbox.Buttonbox()
  
from psychopy import core, visual, event from rusocsci import buttonbox import logging, time
+
# select a function
 +
bb.sendMarker(val=(ord(X)))    #select pulse time
 +
bb.sendMarker(val=2)          #set time of dureation pulse to 2ms
  
##Setup Section
+
bb.sendMarker(val=(ord(M)))    #select marker out
#logging.getLogger().setLevel(logging.DEBUG) # use this for debug info
+
bb.sendMarker(val=115)           #set marker value 115
 +
</syntaxhighlight>
  
win = visual.Window([400,300], monitor="testMonitor") bb = buttonbox.Buttonbox()
+
'''Example using BITSI extended analog read in Python:'''
  
##Experiment Section
+
<syntaxhighlight lang="python" line>
 +
#!/usr/bin/env python
  
b = bb.waitButtons(maxWait = 10.0, buttonList=['A']) print("b: {}".format(b))
+
# import the rusocsci.buttonbox module
 +
import serial
  
##Cleanup Section
+
# make a buttonbox
 +
ser = serial.Serial("COM2", 115200, timeout = 0.10 )
 +
ser = serial.Serial("/dev/ttyUSB0", 115200, timeout = 0.10 )
  
core.quit() The following script lights the LEDs under the buttons pressed.
+
while True:
 +
ser.write('A1')
 +
ser.flush()
 +
x = ser.readline()
 +
visual.TextStim(win, text=x).draw()
  
#!/usr/bin/env python
+
# black screen for 1000 ms
#from __future__ import print_function
+
win.flip()
  
import logging, time, sys from rusocsci import buttonbox
+
key = event.getKeys()
 +
try:
 +
if key[0]=='escape':
 +
break
 +
except:
 +
continue
 +
</syntaxhighlight>
  
##Setup Section
+
<br/>'''Example using the Buttonbox in PsychoPy:'''
  
led = [False]*8
+
<syntaxhighlight lang="python" line>
 +
#!/usr/bin/env python
  
##Experiment Section
+
# import psychopy and rusocsci
 +
from psychopy import core, visual
 +
from rusocsci import buttonbox
  
bb = buttonbox.Buttonbox() while True:
+
## Setup Section
 +
win = visual.Window(monitor="testMonitor")
 +
bb = buttonbox.Buttonbox()
 +
text = visual.TextStim(win, "Press a button on the buttonbox")
  
  buttons = bb.getButtons()
+
## Experiment Section
  if len(buttons):
+
# show text
  for c in buttons:
+
text.draw()
  if ord(c) >= ord('a') and ord(c) < ord('a')+8:
+
win.flip()
  led[ord(c) - ord('a')] = False
+
# wait for response
  elif ord(c) >= ord('A') and ord(c) < ord('A')+8:
+
b = bb.waitButtons()
  led[ord(c) - ord('A')] = True
+
# show response
  bb.setLeds(led)
+
text.setText("you pressed: {}".format(b))
  #print("buttons ({:3d}): {}{}".format(len(buttons), buttons, " "*50), end="\r")
+
text.draw()
  #sys.stdout.flush()</nowiki>
+
win.flip()
 +
core.wait(5)
  
== Matlab Settings ==
+
## Cleanup Section
 +
core.quit()
 +
</syntaxhighlight>
  
<nowiki>
+
For more documentation click here: http://pythonhosted.org//RuSocSci/index.html
===================================================================================================
+
<br>
function handle = serial_buttonbox_common(cmd,varargin)
+
<br>
% to initialize connection:
+
=== Matlab ===
% handle = serial_buttonbox('open',se)
+
'''Example using markers with the Buttonbox in Matlab:'''
%    settings (se):
 
%      define settings as a structure, i.e.:
 
%      se.Device    = 'COM1';
 
%      se.BaudRate  = 115200;
 
%      se.DataBits  = 8;
 
%      se.StopBits  = 1;
 
%      se.Parity    = 0;
 
%      se.PTBPath  = 'c:\MyToolboxes\PsychToolbox'
 
%
 
% to close the connection:
 
% serial_buttonbox('close',handle);
 
 
persistent old_hdl
 
 
% set defaults
 
se.Device    = 'COM1';
 
se.BaudRate  = 115200;
 
se.DataBits  = 8;
 
se.StopBits  = 1;
 
se.Parity    = 0;
 
se.PTBPath  = 'c:\Pgrogram Files\PsychToolbox';
 
 
if nargin < 1
 
    cmd = 'open';
 
end
 
if nargin > 1
 
    % user overwrites default settings
 
    flds = fields(varargin{1});
 
    for n = 1 : numel(flds)
 
      se.(flds{n}) = varargin{1}.(flds{n});
 
    end
 
end
 
 
 
switch cmd
 
    case 'open'
 
      addpath(genpath(se.PTBPath));
 
      % get handle to serial device
 
      handle = open_buttonbox(se.Device);
 
      return
 
    case 'close'
 
      handle = varargin{1};
 
      IOPort('close',handle);
 
      return
 
    case 'run'
 
      % read incoming data
 
      if isempty(old_hdl)
 
          help serial_buttonbox_common
 
          error('Buttonbox not yet initialized');
 
      end
 
      handle = old_hdl;
 
    otherwise
 
      fprintf('Unknown option %s\n',cmd);
 
      return
 
end
 
 
% only gets here when cmd = 'run'
 
while 1 
 
    % start polling for characters (indicating start of scan)
 
    navailable = IOPort('BytesAvailable', handle);
 
    if navailable
 
      data = [];
 
      while navailable
 
          % read incoming data
 
          [newdata, ~, err] = IOPort('Read', handle, 0, navailable);
 
          if ~isempty(err), disp(err); end
 
          data = [data newdata];
 
          %pause(0.001); % if possible just add a small pause to not claim entire core
 
          navailable = IOPort('BytesAvailable', handle);
 
      end
 
      if numel(data)>1
 
          fprintf('\nReceived characters: %d\n',numel(data));
 
      end
 
      for n = 1 : numel(data)
 
%        disp(char(data(n)));
 
          fprintf('incoming: %d\t%s\n',data(n),char(data(n)));
 
      end
 
    end
 
 
 
 
 
end %while 1
 
 
    function hdl = open_buttonbox(device)
 
      % open handle to serial device (mini buttonbox)
 
      try
 
          hdl = IOPort('OpenSerialPort',device,['BaudRate=' num2str(se.BaudRate)]);
 
      catch
 
          if ~isempty(old_hdl)
 
            IOPort('close',old_hdl);
 
          end
 
          hdl = IOPort('OpenSerialPort',device,['BaudRate=' num2str(se.BaudRate)]);
 
      end
 
      old_hdl = hdl;
 
     
 
      fprintf('Wait for device buttonbox....\n');
 
      tic
 
      while ~IOPort('BytesAvailable', hdl) && toc<10
 
          % wait for welcome message device
 
      end
 
      pause(0.5);
 
 
      % clear buffer
 
      %IOPort('flush', hdl);
 
      IOPort('purge', hdl);
 
    end
 
 
 
end</nowiki>
 
  
== Inquisit Settings ==
+
Download the file Bitsi.m from the DCCN website: https://intranet.donders.ru.nl/index.php?id=bitsim0
 +
<br> Make sure to have this file in your Matlab path.
 +
<syntaxhighlight lang="matlab" line style="overflow:auto;">
 +
% At the start of your script, create the buttonbox serial object
 +
bb = Bitsi("COM2");
 +
% other code
 +
        :
 +
</syntaxhighlight>
  
Work in progress
+
BITSI simple mode:
 +
<syntaxhighlight lang="matlab" line style="overflow:auto;">
 +
% This example is for an EEG system sampling at 500Hz samplerate. 
 +
% at the start of your script, reset marker
 +
samplerate = 500;
 +
pulseLen = 2000/samplerate;
 +
bb.sendTrigger(0);
 +
% send a marker
 +
val = 1;                                    % val: this is your marker code, range code 1-255
 +
bb.sendTrigger(val);
 +
java.lang.Thread.sleep(pulseLen);    % wait long enough for the EEG system to capture the trigger, i.e., 2000/samplerate ms
 +
% reset marker
 +
bb.sendTrigger(0)                % Note: if resetting the marker is not possible at this moment in code, you can decide to do this later as long as it has taken place long enough before the next marker has to be sent.
 +
</syntaxhighlight>
  
== E-Prime ==
+
BITSI extended mode:
 +
<syntaxhighlight lang="matlab" line style="overflow:auto;">
 +
samplerate = 500;
 +
pulseLen = 2000/samplerate;
 +
% select a function
 +
bb.sendTrigger(uint8('X'));  % select pulse time
 +
bb.sendTrigger(pulseLen);            % set time of duration pulse to (2000/samplerate) ms
 +
 +
val = 1;                                    % val: this is your marker code, range code 1-255
 +
bb.sendTrigger(uint8('M'));  % select marker out
 +
bb.sendTrigger(val);              % val: this is your marker code, range code 1-255
 +
</syntaxhighlight>
  
Work in progress
+
<syntaxhighlight lang="matlab" line style="overflow:auto;">
 +
% At the end of your script, close the buttonbox serial object
 +
    :
 +
bb.close();
 +
</syntaxhighlight>

Latest revision as of 13:12, 16 October 2020

The buttonbox is used for time accurate(1ms) button press registration. We use it to register buttonpresses, soundkey, voicekey signals and to send tone onset, analog output, triggers with the BITSI protocol. It is suitable for Behavioral, EEG, MEG, and fMRI experiments. The buttonbox is connected to a computer with a usb connection.

Buttonbox (2018)
Buttonbox 2018 1.png
2018 Buttonbox
Downloads
Buttonbox
Buttonbox 03s.png
2013 Buttonbox
Downloads

The output connector has two binary eight bit ports: input and output. The two ports can be used for responses (input) and stimulus triggers (output). Two 12 bits analog outputs and three 12 bits analog inputs. The output connector has a sound and voicekey which triggers when a amplitude reaches a threshold. By using the serial port, the BITSI can be used platform independently: it works on Windows, Linux and Mac OSX. Most programming environments and stimulus packages support serial communication.

There is currently a Microsoft Windows driver issue.

BITSI Protocol

BITSI stands for Bits to Serial Interface. Because the BITSI is designed to interface both in- and output signals, the 'protocol' is asymmetric: the input and output protocols differ.

Input

The input port can be used to interface eight buttons maximally. Button presses are translated to serial output characters/bytes according to the following table:

BITSI Simple
Signal/Button ASCII (rise/fall) Code (rise/fall)
1 A / a 65 / 97
2 B / b 66 / 98
3 C / c 67 / 99
4 D / d 68 / 100
5 E / e 69 / 101
6 F / f 70 / 102
7 G / g 71 / 103
8 H / h 72 / 104

This means that when signal 1 gets active(button press), a capital A will be sent to the serial port. A lowercase 'a' will be sent when the signal is deactivated(button release). Mechanical buttons can be connected directly.

Output

Output knows two protocols: BITSI simple or BITSI extended. To enter a certain protocol two buttons have to be pressed when the BITSIbox is powered or com port opens. [2015]Press button H and A for simple mode and H and B for extended mode. [2018]Press button E and A for simple mode and E and B for extended mode.

If no button is pressed when powered it boots the last known protocol. In the simple protocol every byte sent to the BITSI over the serial port, is represented at the 8 bit output.

The extended protocol uses two bytes(or two characters), this combination can access two analog outputs and a tone generator. The first byte selects the output. The second byte determines the value written to this output.

BITSI Extended
Function Byte 1 (ASCII/code) Byte 2
Marker Out M / 77 Marker Value
Pulse Out P / 80 Marker Value
Pulse Time X / 88 ms before pulse reset
Analog Out 1 Y / 89 Analog Output Value
Analog Out 2 Z / 90 Analog Output Value
Tone T / 84 Start Tone
Detect Sound D / S / 83
Detect Voice D / V / 83
Calibrate Sound C / S
Calibrate Voice C / V
Analog In 1 A / 1
Analog In 2 A / 2
Analog In 3 A / 3
Analog In 4 A / 4
LEDs Off L / X
LEDs Input L / I
LEDs Output L / O

Port Settings

Trigger port

 
Schematic view of the 25 pins connector

The 25 pins female connector has 8 inputs and 8 outputs, respectively 1-8 are inputs and 9-16 are outputs. Three analog input with an analog to digital convertor of 12 bit, pins 17,18,20 and 21. Two analog outputs with an digital to analog convertor of 12 bits on pins 22 and 23.

The inputs 1-8 will be pulled down from 5V to GND when the buttons are pressed. The outputs 9-16 will be pulled up from GND to 5V when the output is activated.

Serial port

Our hardware design allows to be connected to the computers USB and emulates a serial communication Port.

Baudrate 115200
Parity None
Data bits 8
Stop bits 1
Flow control None

USB-Com port

1.Connect the BITSIbox to your computer using the USB cable.

2.When you connect the BITSIbox, Windows should initiate the driver installation process (if you haven't used the computer with an BITSIbox board before).

3.On Windows Vista/7, the driver should be automatically downloaded and installed.

4.On Windows XP, the Add New Hardware wizard will open:

  • When asked Can Windows connect to Windows Update to search for software? select No, not this time. Click next.
  • Select Install from a list or specified location (Advanced) and click next.
  • Make sure that Search for the best driver in these locations is checked; uncheck Search removable media; check Include this location in the search and browse to the c:/beheer/arduino/drivers directory.
  • The wizard will search for the driver and then tell you that a "USB Serial Converter" was found. Click finish.
  • The new hardware wizard will appear again. Go through the same steps and select the same options and location to search. This time, a "USB Serial Port" will be found.

How to Check the Com Port settings(important!)

  • From the Start menu, open the Control Panel.
  • From the control panel, open the System window.
  • From the system properties window, go to the Hardware tab and click the Device Manager button.
  • From the Device Manager window, click Ports (Com&LPT). You should now be able to see which Com Port the USB adapter is assigned to.
  • If the Com Port is 10 or higher, you will have to change it to a lower port.
  • From the Device Manager window, click on USB Serial Port (Com#). Click the Port Settings tab of the USB Serial Port Properties window, and then click the Advanced button.
  • In the Advanced Settings window, use the scroll input to select a Com Port (select 10 or lower). Change Receive (bytes) and Transmit (bytes) to 64. Change the Latency Timer to 1.
  • Click the OK button.

Always connect the usb device to the same port and your settings will be remembered.

Software Settings

Neurobs Presentation

The experiment files needs a few settings for the device to work:

  • In the settings tab: port -> input port -> 1 must be the device that identifies itself as "Arduino Uno" in the device manager. Note that the port must have a number not higher than 10 (COM1-COM10). Use re-enumerate if it is higher.
  • Rate must be set 115200, Parity to None, Data Bits to 8 and Stop Bits to 1, Uncheck FIFO Interrupt.

 

Testing Buttonbox

When pressing on the A button within the input channel tester. You will see the following ASCII code.

 

Adding Marker

 

Testing Markers (output)

Send code 1 for Button A

 

Button A will light up.

 

Send code 0 for clearing.

 

Example PCL code you can program a handle to send a marker:

#handle:
output_port OutputPort = output_port_manager.get_port( 1 );

Example to send a marker:

OutputPort.send_code(100); #create a marker


for more information see chapter 8 in the presentation course by clicking here

Python/PsychoPy

Download this site-package to use the buttonbox: rusocsci

or use in windows command 'pip install --upgrade rusocsci'

Example using buttons from the buttonbox in Python:

 1#!/usr/bin/env python
 2
 3# import the rusocsci.buttonbox module
 4from rusocsci import buttonbox 
 5
 6# make a buttonbox
 7bb = buttonbox.Buttonbox()
 8
 9# wait for a single button press
10b = bb.waitButtons()
11
12# print the button pressed
13print("b: {}".format(b))

Example using markers with the buttonbox in Python:

 1#!/usr/bin/env python
 2
 3# import the rusocsci.buttonbox module
 4from rusocsci import buttonbox 
 5
 6# make a buttonbox
 7bb = buttonbox.Buttonbox()
 8
 9# send a marker
10bb.sendMarker(val=100)    #This is your marker code, range code 1-255

Example using BITSI extended in Python:

 1#!/usr/bin/env python
 2
 3# import the rusocsci.buttonbox module
 4from rusocsci import buttonbox 
 5
 6# make a buttonbox
 7bb = buttonbox.Buttonbox()
 8
 9# select a function
10bb.sendMarker(val=(ord(X)))    #select pulse time
11bb.sendMarker(val=2)           #set time of dureation pulse to 2ms
12
13bb.sendMarker(val=(ord(M)))    #select marker out
14bb.sendMarker(val=115)           #set marker value 115

Example using BITSI extended analog read in Python:

 1#!/usr/bin/env python
 2
 3# import the rusocsci.buttonbox module
 4import serial
 5
 6# make a buttonbox
 7ser = serial.Serial("COM2", 115200, timeout = 0.10 )
 8ser = serial.Serial("/dev/ttyUSB0", 115200, timeout = 0.10 )
 9
10while True:
11	ser.write('A1')
12	ser.flush()
13	x = ser.readline()
14	visual.TextStim(win, text=x).draw()
15
16	# black screen for 1000 ms
17	win.flip()
18
19	key = event.getKeys()
20	try:
21		if key[0]=='escape':
22			break
23	except:
24		continue


Example using the Buttonbox in PsychoPy:

 1#!/usr/bin/env python
 2
 3# import psychopy and rusocsci
 4from psychopy import core, visual 
 5from rusocsci import buttonbox
 6
 7## Setup Section
 8win = visual.Window(monitor="testMonitor")
 9bb = buttonbox.Buttonbox()
10text = visual.TextStim(win, "Press a button on the buttonbox")
11
12## Experiment Section
13# show text
14text.draw()
15win.flip()
16# wait for response
17b = bb.waitButtons()
18# show response
19text.setText("you pressed: {}".format(b))
20text.draw()
21win.flip()
22core.wait(5)
23
24## Cleanup Section
25core.quit()

For more documentation click here: http://pythonhosted.org//RuSocSci/index.html

Matlab

Example using markers with the Buttonbox in Matlab:

Download the file Bitsi.m from the DCCN website: https://intranet.donders.ru.nl/index.php?id=bitsim0
Make sure to have this file in your Matlab path.

1% At the start of your script, create the buttonbox serial object
2bb = Bitsi("COM2");
3% other code
4        :

BITSI simple mode:

 1% This example is for an EEG system sampling at 500Hz samplerate.  
 2% at the start of your script, reset marker
 3samplerate = 500;
 4pulseLen = 2000/samplerate;
 5bb.sendTrigger(0);
 6% send a marker
 7val = 1;                                     % val: this is your marker code, range code 1-255
 8bb.sendTrigger(val);
 9java.lang.Thread.sleep(pulseLen);    % wait long enough for the EEG system to capture the trigger, i.e., 2000/samplerate ms
10% reset marker
11bb.sendTrigger(0)                 % Note: if resetting the marker is not possible at this moment in code, you can decide to do this later as long as it has taken place long enough before the next marker has to be sent.

BITSI extended mode:

1samplerate = 500;
2pulseLen = 2000/samplerate;
3% select a function
4bb.sendTrigger(uint8('X'));   % select pulse time
5bb.sendTrigger(pulseLen);             % set time of duration pulse to (2000/samplerate) ms
6 
7val = 1;                                     % val: this is your marker code, range code 1-255
8bb.sendTrigger(uint8('M'));  % select marker out
9bb.sendTrigger(val);              % val: this is your marker code, range code 1-255
1% At the end of your script, close the buttonbox serial object
2    :
3bb.close();