Difference between revisions of "BalanceBoard Lab"

From TSG Doc
Jump to navigation Jump to search
(Redirected page to Balance Board)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
= Balance board =
+
#REDIRECT [[Balance Board]]
{|
 
|-
 
| [[File:balanceBoard1.jpg|300px|Image: 300 pixels]]
 
|}
 
 
 
== Introduction ==
 
 
 
A balance board(force platform) is commonly used in motor control labs and neurologic clinics. They essentially consist of a set of finely calibrated scales, measuring mechanical forces. The pattern of forces can be used to derive body position, at a high spatial and temporal resolution.
 
 
 
== Description ==
 
 
 
There are several boards specified up to 1M2 and 0,5M2 with a sub-millimeter spatial resolution and a 200 hz temporal resolution.
 
 
 
A typical balance board records at a high spatial and temporal resolution. Regarding spatial resolution: a platform can detect changes from a few sub-millimeters (freezing) to at least 500 centimeter (forward or backward steps). The platform records reliably over four vertical forces. Regarding temporal resolution: the signals are typically sampled at 200 Hz. Even though the system allows even higher sampling rates, in practice 100 Hz is sufficient.
 
 
 
The pressure sensors derive directly from the wii balance board. Each sensor has a maximum pressure of 120Kg. In-house electronics is build to get a clean amplification from the sensors. A National instruments card, USB-6221, takes care of the A/D conversion and connects with usb to a pc. The force plate can be integrated into existing systems for stimulus presentation and for recording bodily signals such as EEG, EMG and heart rate. In practice, this means that the systems are time-locked within millisecond accuracy.
 
 
 
== Instructions ==
 
 
 
Find the BalanceboardCalibration manual here [[Media:SOP_1_BalanceboardCalibration.pdf]]
 
 
 
Find the BalanceBoardBaseline manual here [[Media:SOP_2_BalanceBoardBaseline.pdf]]
 
 
 
Find the InstructionPosture manual here [[Media:SOP_3_InstructionPosture.pdf]]
 
 
 
== Technical design ==
 
{|
 
|-
 
| [[File:Capture.JPG|600px|Image: 600 pixels]]
 
|}
 
Find the national instruments specifications manual here [[Media:NI_USB-6221.pdf]]
 
 
 
== National instruments settings ==
 
{|
 
|-
 
| [[File:Capture2.JPG|600px|Image: 600 pixels]]
 
|}
 
 
 
== Presentation software ==
 
 
 
<nowiki>
 
sub runtrials_national begin
 
 
 
# The dio_device will setup NI-DAQmx device number 1 "Dev1"
 
dio_device card = new dio_device(ni_dio_device, 1, 0 );
 
#int id = card.acquire_analog_input( "MyVoltageOutTask" );
 
int id1 = card.acquire_analog_input( "ForceMeasurement,Voltage_0" );
 
int id2 = card.acquire_analog_input( "ForceMeasurement,Voltage_1" );
 
int id3 = card.acquire_analog_input( "ForceMeasurement,Voltage_2" );
 
int id4 = card.acquire_analog_input( "ForceMeasurement,Voltage_3" );
 
count_old = response_manager.total_response_count();
 
loop
 
until false
 
begin
 
if response_manager.total_response_count() > count_old then
 
count_old = response_manager.total_response_count();
 
calibrate_board = true;
 
end;
 
 
message_scale[1] = round(round(card.read_analog( id1, 1000.0 ),6) * 1000.0, 0);
 
message_scale[2] = round(round(card.read_analog( id2, 1000.0 ),6) * 1000.0, 0);
 
message_scale[3] = round(round(card.read_analog( id3, 1000.0 ),6) * 1000.0, 0);
 
message_scale[4] = round(round(card.read_analog( id4, 1000.0 ),6) * 1000.0, 0);
 
 
if calibrate_board then
 
zero_scale_left_up    = message_scale[left_up];
 
zero_scale_left_down  = message_scale[left_down];
 
zero_scale_right_up  = message_scale[right_up];
 
zero_scale_right_down = message_scale[right_down];
 
calibrate_board = false;
 
end;
 
 
message_scale[left_up]    = message_scale[left_up] - zero_scale_left_up;
 
message_scale[left_down]  = message_scale[left_down] - zero_scale_left_down;
 
message_scale[right_up]  = message_scale[right_up] - zero_scale_right_up;
 
message_scale[right_down] = message_scale[right_down] - zero_scale_right_down;
 
t_scale11.set_caption(string(message_scale[left_up]));
 
t_scale11.redraw();
 
t_scale22.set_caption(string(message_scale[left_down]));
 
t_scale22.redraw();
 
t_scale33.set_caption(string(message_scale[right_up]));
 
t_scale33.redraw();
 
t_scale44.set_caption(string(message_scale[right_down]));
 
t_scale44.redraw();
 
 
pos_dot_x = (message_scale[right_up] + message_scale[right_down]) - message_scale[left_up] + message_scale[left_down]);
 
pos_dot_y = (message_scale[left_up] + message_scale[right_up]) - message_scale[left_down] + message_scale[right_down]);
 
p_balance.add_part( balance_pos, (pos_dot_x * 1.0), (pos_dot_y * 1.0));
 
t_coord.set_caption(string(pos_dot_x)+","+string(pos_dot_y));
 
t_coord.redraw();
 
 
p_balance.present();
 
p_balance.remove_part( 8 );
 
end;
 
card.release_analog_input( id1 );
 
card.release_analog_input( id2 );
 
card.release_analog_input( id3 );
 
card.release_analog_input( id4 );
 
end;
 
</nowiki>
 
 
 
== Python software ==
 
 
 
<syntaxhighlight lang="python">
 
from PyDAQmx import Task
 
from PyDAQmx.DAQmxConstants import *
 
from PyDAQmx.DAQmxTypes import *
 
import numpy
 
import msvcrt
 
import time
 
 
 
times = []
 
try :
 
    freq = 100.0 # Hz
 
    numinputs = 4
 
 
 
    analog_input = Task()
 
    read = int32()
 
    timer= time.clock()
 
    running = True
 
 
 
    data = numpy.zeros((numinputs,), dtype=numpy.float64)
 
 
 
    #DAQmx Configure Code
 
    analog_input.CreateAIVoltageChan("Dev1/ai0:%i" % (numinputs - 1), None, DAQmx_Val_RSE, -10.0,10.0,DAQmx_Val_Volts,None)
 
    #analog_input.CfgInputBuffer(0)
 
    #analog_input.CfgSampClkTiming("",freq,DAQmx_Val_Rising,DAQmx_Val_ContSamps,1000)
 
 
 
    analog_input.StartTask()
 
    datalist = []
 
    while running:
 
        #DAQmx Start Code
 
       
 
   
 
       
 
        timeBeforeRead = time.clock()
 
        analog_input.ReadAnalogF64(-1,10.0,DAQmx_Val_GroupByChannel,data,numinputs*2,byref(read),None)
 
        ser.write('S')
 
        line = ser.readline()
 
 
 
        time.sleep((1 / freq) - (time.clock()- timeBeforeRead))
 
       
 
        times.append(timeBeforeRead - time.clock())
 
     
 
 
 
        if msvcrt.kbhit():
 
            running = False
 
       
 
 
 
finally :
 
    print "Stop"
 
    t = numpy.array(times)
 
    deviation = numpy.mean(abs(t - numpy.mean(t)))
 
    maxdeviation  = max(abs(t-numpy.mean(t)))
 
   
 
    print numpy.mean(t), deviation , maxdeviation
 
 
 
 
 
    analog_input.StopTask();
 
</syntaxhighlight>
 

Latest revision as of 08:45, 10 August 2015

Redirect to: