
 

 

 

 

 

 

Presentation PCL basics  

Niveau 1 

The programming language 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Presetation PCL.doc p. 2  

Presentation guide to PCL 
ERG, RU Nijmegen 

 

 

Presentation PCL Basics 

Version April 2013 

 

Table of content 
Introduction         3 

1. Basic PCL types       4 
a. Names and declarations     4 
b. Conversions       5 
c. String methods      5 

 
2. Expressions        7 

 
3. Special types       10 

 
4. PCL Loops       12 

b. Scope       14 
 

5. PCL IF-statements      15 
b. Scope       17 

 
6. Arrays        18 

 
7. Include-statements      20 

 
8. Subroutines       21 

b. Scope       22 
 



Presetation PCL.doc p. 3  

Presentation guide to PCL 
ERG, RU Nijmegen 

Introduction 
 
Presentation exists of two programming languages SDL(scenario description language) and 
PCL(presentation control language). Presentation relies a lot on SDL. That is where this 
document comes in. SDL has some not usable timing features. There are two ways to program 
an experiment in Presentation: 

• Mainly in SDL 
• Mainly in PCL, with as little SDL as possible 
 

We choose number 2, programming in PCL gives you maximum flexibility. The help file 
function in Presentation is not very supportive when you program PCL, but if you search a bit 
harder you will find that PCL is also well documented. So totally forget SDL programming 
and we start of with some basic programming skills in PCL. Concentrate on the constructions 
described, we will use this in the upcoming course. If you don’t understand parts of the topics 
be sure to discuss it in the upcoming meeting, but keep on reading the rest of the document. 



Presetation PCL.doc p. 4  

Presentation guide to PCL 
ERG, RU Nijmegen 

 

 

1. Basic PCL Types 

PCL contains four basic variable types and many reference variable types. The four basic 
types are as follows: 

• int : signed integer variables  
• double : signed floating point variables  
• bool : boolean variables  
• string : character string variables  

1.a  Names and Declarations 

Before you can use a variable, you must declare it. A variable declaration is a statement that 
has the following form: 

type tVariableName [ = expression ] 

with the part in brackets optional. This creates a variable named "tVariableName" of type 
"type". A variable name can be any combination of numbers, letters and underscores ('_') that 
begins with a letter. However, you can't use a reserved word, built-in function name or 
previously declared variable name. 

#------- Example -------
 
int iValue; 
double dValue; 
int iCorrectInARow; 
string sStimulusName; 

String variables are initialized to be null strings. However "int", "double", and "bool" 
variables have undefined values after declaration. You may optionally assign a value to the 
variable when you declare it. The value can be any expression of the correct type. 

#------- Example ------- 
 
int iValue = 5; 
double dValue = 10.9; 
double dNewVolume = dValue * 0.054; 
string sMyName = "Bob"; 

Boolean literals are the reserved words ‘true’ and ‘false’. String literals must all be on one 
line (unlike in scenario files) but may contain the following escape characters: '\n' for a new 
line, '\t' for a tab, and '\"' for a double quotation mark. You can also specify the ascii code of a 
character by using '\x' followed by a two digit hexadecimal number or a unicode character by 
using '\u' followed by a four digit hexadecimal number. 



Presetation PCL.doc p. 5  

Presentation guide to PCL 
ERG, RU Nijmegen 

#------- Example ------- 
 
string sIntro = "line 1: \"quote\"\nline 2"; 
bool bDoOver = false; 
string sControl = "\x05\xa5\xb4\xb9"; 
string sUnicodeStr = "Chinese char: \u9F4B"; 

Floating point literals between 1 and -1 must have a zero before the decimal point and all 
floating point literals must have a decimal point. This includes zero, so that "0" is an integer 
literal while "0.0" is a double. 

#------- Example ------- 
 
int iValue = 0; 
double dValue = 0; # Error, 0 is not a double: dValue = 0.0; 
dValue = .5; # Error, need a 0 before: dValue = 0.5; 
iValue = 5e6; # power of 10, d = 5e6; # Error 
d = 5.0e10; 

You may also use character literals which have an integer value equal to their character codes. 
Character literals consist of a single character between single quotation marks. You may also 
use the escape characters '\n', '\t', '\''.  

#------- Example ------- 
 
system_keyboard.set_delimiter( ' ' ); # space-bar 

1.b Conversions 

PCL has static type checking with no implicit conversions between types. However, there are 
built-in functions that can be used to convert between basic types, for instance if you want to 
change a intereger to a double. The type names  double as the function names in these cases:  

#------- Example ------- 
 
int iValue = 5; 
double dValue = double( i ); 
bool bBool = bool( i ); 
string sValueOfD = string( d );

We describe the exact behavior of the conversion functions in the Built-in Functions section. 

1.c String methods 

The string type has methods you can call for a string variable. A method is a function or 
subroutine that accesses the data for a specific variable. You call a method by typing the 



Presetation PCL.doc p. 6  

Presentation guide to PCL 
ERG, RU Nijmegen 

variable name followed by a period (.) followed by the function name. The method may 
optionally require arguments.  

 

#------- Example ------- 
 

# create a string  

string sWords= "123456789";      

# returns the number of characters in the string 

int iSizeOfString = sWords.count(); 
 



Presetation PCL.doc p. 7  

Presentation guide to PCL 
ERG, RU Nijmegen 

 

 

2. Expressions 

You can use operators (the standard mathematical signs) to manipulate your variables in 
Presentation. An expression is a statement that uses these operators to change the value of 
your variable.  

#------- Example ------- 
 

int iValue = 8 * ( response_manager.hits() + 4 ); 

double dValue = -( 4.0 * random() - 4.0 ); 

my_sound.set_volume( dValue * 10.0 - 5.0 ); 

if (iValue == 1) || (jValue == 2) then 

   mValue = 4 

end; 

If you want to combine variables, they need to be of the same type (e.g. int or double), 
otherwise you’ll get an error. If you want to combine the values of different types of 
variables, you will have to converse them to the same type first.  

#------- Example ------- 
 

double dValue = 0;        # Error, 0 is an integer 

dValue = 0.0;      # Correct, type double with leading 0 

 

dValue = 8 * random();    # Error, 8 is an integer and random() returns a double 

dValue = 8.0 * random();  # Correct, 8.0 is a double 

 

dValue = .5 * (4.0 + d2); # Error, .5 not a double literal 

dValue = 0.5 * (4.0 + d2); # Correct, you must include the leading 0 

 

int iValue = 5;              # start with type int 

dValue = 10.0 * double( i ); # convert to double 

 
 



Presetation PCL.doc p. 8  

Presentation guide to PCL 
ERG, RU Nijmegen 

Operators have the following precedence from highest to lowest:  

! (not) 

* (multiplication), / (division), %(mod) 

+ (addition), - (subtraction) 

== (equals), != (not equals), > (greater than), < (less than), 

>= (greater than or equal to), <= (less than or equal to), && (and), || (or) 

Operators with the same precedence are evaluated from left to right. Parentheses can be used 
to group subexpressions together and to alter the order of precedence in an expression. They 
also can increase clarity, facilitating reading and debugging of your experiment.  

#------- Example ------- 
 

int iValue = 8 + 5 * 10; 

iValue = (8 + 5) * 10;   # different precedence and different result 

 

bool bBool = iValue == 5 && iAnotherValue == 4; 

bBool = (iValue == 5) && (iAnotherValue == 4);   # the same result, increased readability 

 

The following operators apply to the listed types:  

int: +, -, *, /, <, >, <=, >=, == ,! =, % 

double: +, -, *, /, <, >, <=, >=, ==, != 

bool: ==, !=, &&, ||, ! 

string: +, ==, != 

reference types: ==, != 

For bool values, using && (and) or || (or) results in both expressions being evaluated, 
regardless of the result of the evaluation of the first expression.  

For string values, the '+' operator produces string concatenation.  

#------- Example ------- 
 

string s1 = "Hello "; 

string s2 = "there!"; 



Presetation PCL.doc p. 9  

Presentation guide to PCL 
ERG, RU Nijmegen 

string s3 = s1 + s2;   # "Hello there!"

 



Presetation PCL.doc p. 10  

Presentation guide to PCL 
ERG, RU Nijmegen 

 

 

3. Special Types 

PCL has many other reference variable types, which are often dedicated to perform a specific 
function. You can view a complete list in the PCL Reference section of the Presentation Help. 
Only some of these types correspond to stimulus objects that can be defined in SDL. The 
remaining types give you access to other information and services provided by Presentation. 
For example, the program_response_manager type gives you access to information about 
responses that occur during the scenario. 

The value of a reference variable always points to an object. For reference types related to 
SDL stimulus objects, the objects are created by your definitions in SDL. The remaining PCL 
objects are created in three general ways: 

• Presentation automatically creates a reference variable referring to an object  
• A reference variable can be obtained from another PCL object  
• You can create your own objects using a special new operator  

In the first case, Presentation automatically provides a variable you can use to access the 
services provided by an object. For example, the predefined variable response_manager of 
already points to an object. Just use this variable when you want to call one of the 
program_response_manager methods. (See program_response_manager PCL type.)  

#------- Example ------- 
 

p_Picture1.present(); 

if (response_manager.hits() > 0) then 

   p_Feedback1.present() 

end; 

If you look at the program_response_manager PCL type reference page, you will see the 
name of the predefined variable after "Predefined variable:". This will be true of all reference 
types with predefined variables. Since there is only one program_response_manager object 
allowed, there is no point to making more reference variables of this type. Thus, this is not 
allowed and is indicated on the reference page by "declarable: no - arrayable: no". The text 
"SDL defineable: no" means that objects of that type cannot be created by defining them in 
SDL. 
 



Presetation PCL.doc p. 11  

Presentation guide to PCL 
ERG, RU Nijmegen 

 

Lastly, objects of some types can be created during a PCL program. To do this, use the 
keyword “new” followed by the name of the object type. This will create a new object of that 
type and return a reference to it. You will want to assign this to a variable of the appropriate 
type. Sometimes the new statement requires arguments. This will be indicated in the PCL type 
reference page for each type. 

#------- Example ------- 
 

input_file InputFile = new input_file; 

InputFile.open( "stim_sequence.txt" ); 



Presetation PCL.doc p. 12  

Presentation guide to PCL 
ERG, RU Nijmegen 

 

 

4. PCL Loops 

The loop construct allows you to create PCL code that will execute a single section of code 
repeatedly. Every loop construct first contains a boolean expression. Each time Presentation 
executes the loop it evaluates the boolean expression. If the boolean expression evaluates to 
false, Presentation executes the code. If true, Presentation exits the loop.  

loop 
     statement_list 
until 
     boolean_expression 
begin 
     statement_list 
end 

A "statement_list" can contain any number of PCL statements separated by semicolons. The 
first statement list after the loop keyword typically sets a value for an initial condition or 
declares any variables only used inside the loop. Assume that we want to present 100 pictures 
to a subject, each of which is stored in an array. We might set a counter iValue to the value of 
1 initially because we will start with the first array element.  

The boolean_expression is what the loop uses to determine whether or not to run the 
statements between begin and end. For this experiment if we use the code ‘iValue > 50’ we 
will only pass through half of the array.  

The statements that do the real work lie between the begin and end keywords. If you are 
using a counter in the loop, make sure you change the value in this statement list.  

We use these statements to create the next example:  

#------- Example ------- 
 
loop 
 int iValue = 1;    # used for counter 
  
until 
 iValue > 100     # this is our boolean_expression 
begin 
        # present the correct picture in the array 
 t_IntroText.set_caption( sWords[ iValue ] ); 
 ... 
 p_Fixation.present(); 
 iValue = iValue + 1     # we increment the counter by one for each loop 
end; 



Presetation PCL.doc p. 13  

Presentation guide to PCL 
ERG, RU Nijmegen 

When PCL encounters a loop statement, it first executes the statement list between loop and 
until. In this case we set iValue to 1. It then evaluates the expression between until and begin. 
If the expression is false, the statement list between begin and end is executed. Inside the 
statement list we increment iValue by 1 each time it executes. When this is completed, the 
Boolean expression is evaluated again. Therefore the main body executes 100 times.  

If you are using a counter or some other variable to determine when to exit the loop, make 
sure you update that variable in the body of the loop. If you forget to do this, the loop will run 
forever.  

#------- Example ------- 
 
loop 
 int iValue = 1 
until 
 iValue > sWords.count() 
begin 
 t_IntroText.set_caption( sWords[ iValue ] ); 
end; 
# Oops! Runs sWords[1] forever 

The break statement can be used to exit from a loop immediately, regardless of the loop 
conditional. When a break statement is encountered, execution resumes after the loop.  

#------- Example ------- 
 
loop 
 int iValue = 1 
until 
 iValue > sWords.count() 
begin 
 sWords[i].present(); 
 if (response_manager.last_response() == 2) then 
        break;            # don't run remainder of trials 
 end; 
 iValue = iValue + 1 
end; 

The continue statement causes the remainder of the loop body to be skipped; however, it does 
not exit the loop. After a continue statement, the loop conditional is evaluated and if it is false, 
the loop body is executed again.  

#------- Example ------- 
 
loop 
 int iValue = 0 
until 
 iValue > sWords.count() 



Presetation PCL.doc p. 14  

Presentation guide to PCL 
ERG, RU Nijmegen 

begin 
 iValue = iValue + 1; 
 sWords[i].present(); 
 if (response_manager.last_response() == 2) then 
           continue;           # don't run trial2 and other stuff 
 end; 
 p_Picture2.present(); 
 # ... 
end; 

4.a Scope 

All statements contained in a loop statement between loop and end form a scope. This means 
that variables declared in a statement inside the loop statement have no meaning outside the 
scope.  

#------- Example ------- 
 
loop 
            int iValue = 1 
until 
            iValue > iTest 
begin 
 ... 
end; 
iTest = iValue;   # Error, can't use iValue out here

 



Presetation PCL.doc p. 15  

Presentation guide to PCL 
ERG, RU Nijmegen 

  

 

5. PCL If Statements 

The if-then construct allows you to build conditional statements. You use the if-then 
statement when you have boolean (true/false) choices within your experiment that delineate 
different conditions. For instance, you may want to play a high tone if the subject responded 
correctly to the trial and play a low tone if he responded incorrectly.  

The if-then statement uses this template:  

if boolean_expression then 
     statement_list 
[ elseif_part ] 
[ else_part ] 
end 

Items in brackets are optional and are explained below. For each conditional block there must 
be exactly one [if boolean_expression then] and one end.  

"boolean_expression" is any mathematical or logical expression that evaluates to either true or 
false (e.g. iValue < 1).  

A "statement_list" is zero or more PCL statements separated by semi-colons.  

The "else_part" of the statement is optional. If included it occurs exactly once. It must be the 
final statement of the conditional block and it represents the default action of the block if no 
other conditions evaluate to true. The "else_part" has the following form:  

else_part: else statement_list 

You may want to evaluate more than one condition in a conditional block. For instance, 
assume you create a reaction time experiment. You may want to execute different sets of 
instructions depending upon the value of a subject's reaction time for each trial. There is a 
condition for reaction times less than 100 ms (these values are too small for real reaction 
times and represent a guess). A second condition occurs if the reaction time is more than 4000 
ms (these values are large and we assume that the subject missed the trial). Finally you may 
want to determine error rates for responses in the range of 100 ms to 1000 ms and compare 
them to error rates for values between 1001 ms to 3999 ms. You should implement the 
"elseif_part" to separate the final two conditions.  

elseif_part: elseif boolean_expression then statement_list 

This first example uses only the if-then construct.  



Presetation PCL.doc p. 16  

Presentation guide to PCL 
ERG, RU Nijmegen 

 

#------- Example ------- 
 
if (iValue== 1) then 
   iOutput = 2         # semi-colon not required 
end; 

In this example we add a default condition. If the if-then condition evaluates to false we 
assign 1.0 to the variable d  

#------- Example ------- 
 
#   if the if-then statement is false 
if (d > 5.0) then 
   p_Fixation.present();  # semi-colon required 
   d = 2.0 
else 
  p_Picture1.present();  # this is the default condition 
   d = 1.0 
end; 

In the third example we need to evaluate three conditions before providing a default else 
condition.  

#------- Example ------- 
 
if (iValue == 1) then 
   p_Fixation.present; 
   iOutput = 0 
elseif (iValue == 2) then 
    p_Picture1.present; 
   iOutput = 1 
elseif (iValue > 2) then 
   iOutput = 2 
else 
   iOutput = 3 
end; 

This final example has multiple conditions but if both conditions are false there is no default 
action.  

#------- Example ------- 
 
if (iInput != 1) then 
   p_Picture1.set_part_x( 1, 2 ) 
elseif (iCondition > 0) then 
   p_Picture1.set_part_x( 1, l ) 



Presetation PCL.doc p. 17  

Presentation guide to PCL 
ERG, RU Nijmegen 

end; 

The sections between keywords then, elseif, else, and end are statement lists so the final 
statement in the list does not require a trailing semicolon although it is useful to add one in 
case you add code later. The keyword elseif is one word which may be confused with the two 
words "else if". If you incorrectly substitute "else if" for elseif, your if statement will be 
missing an end. (We provide an example below why this is incorrect).  

#------- Example ------- 
 
if (values[iCounter] == m) then 
       iOutput = iOutput + 1 
else if (values[iCounter] == 2) then #Oops! 
       iOutput = iOutput - 1 
end; 
 
# The following spacing addresses the "else if" problem 
if (iCounter == 1) then 
       iOutput = iOutput + 1 
else 
      if (iCounter == 2) then 
             iOutput = iOutput – 1 
      end; 
# Missing "end" here! Should have used "elseif" 

 

5.a  Scope 

Each of the statement lists contained in an if statement is a separate scope. The scope of a 
variable means that variables declared in one of those statement lists can only be used within 
that statement list and does not exist outside of it. You can use outside variables in those 
statement lists. Currently PCL does not allow you to override outside variables.  

#------- Example ------- 
 
int iValue = 5; 
if (iInput > 3) then 
     int iOutput = 0; 
     ... 
     int iValue;    # Error, can't override iValue 
else 
     iOutput = 2;    # Error, iOutput doesn't exist in this scope 
     ... 
end; 
iValue = 5;       # Error, iValue no longer exists 



Presetation PCL.doc p. 18  

Presentation guide to PCL 
ERG, RU Nijmegen 

 

 

6. Arrays 

PCL programs can use variables that are arrays of other variables. You can store the four 
basic variable types as well as some of the reference types in arrays. We say a variable type is 
"arrayable" if it can be stored in an array. You can find out which reference types are 
arrayable in the PCL Reference section and going to the page of the particular type you are 
interested in. 

An array declaration has the following form:  

array <arrayable_type> name[integer_valued_expression] 

The expression between the brackets specifies the size of the array.  

#------- Example ------- 
 
int iValue = 5; 
array <int> aiMyIntegers[iValue]; 
array <picture> apMyPictures[iValue]; 

Arrays may also be multi-dimensional. For multi-dimensional arrays, additional ranges are 
placed between brackets:  

#------- Example ------- 
 
array <int> aiMyIntegers[10][10][5]; 

You may assign all elements of an array with literals of that type in one statement if the 
elements are one of the four standard types. The elements in an array literal are listed between 
curly brackets, are separated by commas and must be literals. You can create a multi-
dimensional array literal by nesting the curly brackets.  

#------- Example ------- 
 
array <int> 
aiValue[3] = { 1, 2, 3 }; 
aiIntegers = { 4, 5, 6 }; 
 
array <int> 
aiMoreIntegers [2][3] = { { 1, 3, 3 }, { 4, 5, 6 } }; 
 
int iValue = 1; 
aiIntegers = { iValue, iValue, iValue }; # Error! Elements of an array literal must be literals 



Presetation PCL.doc p. 19  

Presentation guide to PCL 
ERG, RU Nijmegen 

Elements of an array variable are accessed by placing an integer index between square 
brackets after the array name. The integer index can be any expression with an integer value. 
The indices of array elements start with 1. Incomplete indexing of a multi-dimensional array 
will yield another array of lower dimension.  

#------- Example ------- 
 
int i = aiMyInts[5]; 
picture p_NextPicture = apMyPictures[ 2 * i ]; 
 
int j = aiMyInts[0]; # Error! Array indices start with 1 
 
array <int> aiMoreInts[3][10]; 
 
aiMoreInts[1] = aMyInts; 
aiMoreInts [2] = aMyInts; 
aiMoreInts [3] = aMyInts; 
 
i = aiMoreInts[2][random( 1, 10 )]; 

When copying one array onto another the arrays must have the same type and dimensionality 
but they need not have the same size. If the sizes differ, the maximum number of possible 
assignments are performed. If you initialize an array in the declaration statement with an array 
of a smaller size, the remaining elements will not be zeroed.  



Presetation PCL.doc p. 20  

Presentation guide to PCL 
ERG, RU Nijmegen 

7. Include Statements 

You can use an include statement to read PCL code from a file in addition to the main PCL 
file or scenario file. The include statement has the following form. 

include "filename" 

This statement causes Presentation to insert the contents of the specified file at that point in 
the PCL program. If the filename you provide does not contain a complete path, the filename 
is relative to the directory of the file containing the include statement. 

#------- Example ------- 
 

include "C:\\experiments\\common\\standard_subroutines.pcl"; 

include "utility.pcl"; # same directory as this file 

Remember that you need two backslashes within a string to result in a single backslash. 



Presetation PCL.doc p. 21  

Presentation guide to PCL 
ERG, RU Nijmegen 

 

 

8. Subroutines 

8.a Introduction  

Subroutines are useful in converting what are possibly extended, complicated lines of code for 
a complex experiment into logical subgroups that allow for a greater flexibility and easier 
maintenance. Properly implemented, subroutines provide a modular structure to PCL code.  

You may define your own subroutines that can be called later in your PCL program. You may 
pass arguments and receive return values from subroutines. A subroutine is defined in a 
subroutine statement. A subroutine statement has the following form (optional parts inside []):  

sub 
   [ return_value ] name [ argument_list ] 
begin 
   subroutine_body 
end 

The method you choose for spacing between words is not important. If the return value exists 
it will be the name of a PCL type. The argument list is a list of type name and variable name 
pairs separated by commas. The subroutine body is an arbitrary number of PCL statements 
except for other subroutine definition statements. Subroutines are called using the name of the 
subroutine followed by parentheses () enclosing any arguments.  

#------- Example ------- 
 
sub 
   ShowThreePictures   # this subroutine takes no arguments 
begin 
   p_Pic1.present(); 
   p_Pic2.present(); 
   p_Pic3.present() 
end; 
 
sub 
   Wait( int iDuration )  # this takes one argument of type int 
begin 
   loop 
      int iEndTime = clock.time()  + iDuration 
   until 
       clock.time() > = iEndTime 
   begin 
             # we don't execute any code in here 
   end 
end; 



Presetation PCL.doc p. 22  

Presentation guide to PCL 
ERG, RU Nijmegen 

8.b Scope 

The subroutine body forms a local scope for those variables declared in the argument list. 
These variables are only defined within the subroutine body. Statements in the subroutine 
body may reference any global variables declared before the subroutine definition.  

#------- Example ------- 
 
int iIndex = 0; 
 
sub 
   AdjustIndex( int j )     # j is local to this subroutine 
begin 
   if (mod( j, 2 ) == 0) then 
      iIndex = iIndex + 1 
   else 
      iIndex = iIndex - 1 
   end 
end; 
 
j = 5;  # error, j doesn't exist out here 
int j = 3;  #ok, declare a j outside of subroutine's scope 
AdjustIndex( j ); # call subroutine and change index 
 

In the example Presentation knows that the j inside the subroutine is different from that 
outside the subroutine.  

 


