
 RTC3D Protocol
 Revision 004

 1/19

RTC3D protocol
This defines the protocol used in First Principles and WaveFront to stream data through
TCP/IP.

Table of contents

RTC3D protocol.. 1
1 Introduction... 3
2 How to connect to the RT Server.. 3

2.1 Nagling.. 3
3 Architecture compatibility .. 3

3.1 Byte order.. 3
3.2 Structure packing .. 4
3.3 Floating point values... 4

4 Basic protocol ... 4
4.1 General-purpose data packets ... 4
4.2 Data types.. 5
4.3 Byte order.. 5

5 Commands .. 6
5.1 Basic protocol for commands ... 6
5.2 Syntax ... 7
5.3 List of available commands .. 7

5.3.1 Version Parameters: n.n ... 7
5.3.2 SetByteOrder... 8

Parameters: BigEndian / LittleEndian .. 8
5.3.3 SendParameters... 8

Parameters: [All] [General] [3D] [Analog] [Force] [6D] [Events]..................................... 8
5.3.4 SendCurrentFrame .. 8

Parameters: [All] [3D] [Analog] [Force] [6D].. 8
5.3.5 StreamFrames ... 9
5.3.6 Bye .. 10

6 XML parameters ... 10
6.1 General parameters ... 11
6.2 3D parameters ... 11
6.3 6D parameters ... 12
6.4 Analog parameters .. 12
6.5 Force parameters... 13
6.6 Events Parameters... 14

7 Data frames... 15
7.1 General data frame layout... 16
7.2 Data frame component types .. 16
7.3 The 3D data frame component.. 17

 RTC3D Protocol
 Revision 004

 2/19

7.4 The Analog data frame component... 17
7.5 The Force data frame component ... 17
7.6 The 6D data frame component.. 18
7.7 The Event data frame component ... 18

 RTC3D Protocol
 Revision 004

 3/19

1 Introduction
The RT Server software is used to provide real-time capture data from motion
capture equipment to third party applications interested in data rather than in
operating the equipment itself. The real time processing results can be
retrieved through a TCP/IP connection in real time. This document describes
the protocol used in that TCP/IP connection.

2 How to connect to the RT Server
The RT Server is set up to listen to TCP/IP port on the computer it is running
on. NDI First Principles has a server listening at port 3020 and NDI Wave
Front at port 3030 as default.

2.1 Nagling
The TCP protocol by default uses a performance improvement called Nagle’s
algorithm that reduces the bandwidth used by the TCP connection. In the case
of a real time server that sends small amounts of data in each frame, this
algorithm should be turned off. Otherwise the server (and client) will wait to
fill a full TCP packet, or until the previous packet has been acknowledged by
the receiver, before sending it to the client (or the server).

3 Architecture compatibility
The RT Server should be able to communicate successfully with clients from
any computer architecture. To avoid problems, there are two things that need
to be considered: byte order and structure packing.

3.1 Byte order
The byte order of data pieces larger than one byte is very important. Different
computer architectures use different byte orders. Windows (or more correctly
computers based on Intel x86 processors) use Little-Endian (which means
that the least significant byte comes first) while most others use Big-Endian.
Since the IP protocol (which TCP is based on and all internet traffic and most
network traffic is built on) is available on most architectures, data sent over
TCP/IP must have a specified byte order. The byte order used by most
TCP/IP-based protocols is called network byte order and it has been defined
to be Big-Endian. The RT Server should follow this standard but also allow

 RTC3D Protocol
 Revision 004

 4/19

for limited use of Little-Endian byte order to facilitate the use of the protocol
for Windows clients. See the 4.3 Byte order section.

3.2 Structure packing
Many processors require that data is aligned on certain boundaries in
memory. This is normally taken care of by the compiler of a computer
program. The RT Server uses packing 4 .This means, for example, that if an
array of structs is transferred between the server and the client, and each
struct is made up of a 32-bit int and an 8-bit int, the size of each element in
the array will be 8 bytes, not 5. The specification of the protocol is very
specific about the exact layout of binary data sent between the server and the
client.

3.3 Floating point values
The floating point type used by the RT Server is defined by IEEE 754 – single precision
32 bit. It exceeds the level of noise of 3D and analog data being transferred if right units
are used. (at the range of ~15000 mm (mV) the maximum float error is ~0.4 micro meter
(micro Volt)).

4 Basic protocol
This section describes the basic-level protocol used when communicating
with the RT Server.

4.1 General-purpose data packets
All transmissions between the server and the client take place inside general-
purpose data packets. Each packet starts with a header with two fields: a size
field and a type field. Then the data of the specified type and size follows the
header. To read data transmitted from the server, first read the four-byte size
field and then the remaining number of bytes specified by this field.
NB: The Size field specifies the size of the whole packet including the size of
the Size field itself.

General-purpose data packet header:

Size in
bytes

Name Description

 RTC3D Protocol
 Revision 004

 5/19

4 Size The total size of the data packet including these
four bytes denoting the size.

4 Type The type of data in the packet

After the header follows the actual data of the packet:

Size – 8 Data Whatever data that the Type field says it is.

NB: A general-purpose data packet sent to or from a RT Server is not a type
of TCP data packet. TCP is defined as a data stream. RT Server data packets
are part of the RT Server protocol defined on top of the TCP stream.

4.2 Data types
The Type field of the general-purpose data packet header is a number that
should be interpreted according to the table below. These are the data types
that are defined in the protocol so far.

Type
no

Name Description

0 Error The last command generated an error. The error
message is sent as a string of ASCII characters

1 Command
string /
Command
succeeded

A command sent to the server, or a response
from the server to a command indicating that the
command was successful. This is a sequence of
single-byte ASCII characters.

2 XML Data sent by the server in the form of XML, or
data sent to the server in the form of XML. This
too is a sequence of single-byte ASCII
characters, but the sequence should be parsed as
XML.

3 Data frame One sample of real time data sent from the
server. The contents of the frame may vary
depending on the commands/settings sent to the
server.

4 No Data This packet type has no body. It indicates that a
measurement has finished or is not yet started.

5 Complete C3D
file

A complete C3D file sent from the server.

4.3 Byte order
As explained above the default byte order for data sent in the protocol is Big-
Endian. There are, however, some kinds of data that are always Little-Endian

 RTC3D Protocol
 Revision 004

 6/19

(Complete C3D file). The byte order of the Data frames, on the other hand,
can be set by the client to the preferred byte order (by using the command
SetByteOrder). And the byte order of strings and XML data is not affected by
byte order at all since the data is single-byte.

To summarize, here is a table of the byte orders followed by the RT Server
protocol:

Item Byte order Comments
General-purpose
data packet
header

Big-Endian ALWAYS Big-Endian, even if the
contents of the general-purpose data
packet use Little-Endian byte order.

Strings and XML
data types

Not affected Since the strings in the protocol are
defines as single-byte ASCII
characters, they are not affected by byte
order issues. You can’t order a single
byte.

Complete C3D
file data type

Little-Endian NB: The Size and Type fields of the
header are still Big-Endian!

All other data
types

Can be
changed by
the client
Default: Big-
Endian

By sending the SetByteOrder
command, the byte order can be
changed.

5 Commands

5.1 Basic protocol for commands
A command is sent in a data packet of type string (as seen above). The
command strings may or may not be null-terminated. The layout of a typical
command sent to the server is shown in the table below. The table includes
the general-purpose data packet header:

Size
in
bytes

Name Value

4 Size 20 (4+4+12) – Laid out like this (ALWAYS Big
Endian).

 RTC3D Protocol
 Revision 004

 7/19

Byte 1 2 3 4
Value 0 0 0 20

4 Type 1 – Laid out like this (ALWAYS Big Endian).

Byte 1 2 3 4
Value 0 0 0 1

12 Data “Version 1.0” – laid out like this (with a NULL char to

terminate it, which is not required).

Byte 1 2 3 4 5 6 7 8 9 10 11 12
Value V e r s i o n \32 1 . 0 \0

5.2 Syntax
• A command contains no space characters.
• A command can have zero or more parameters, all of them space-

separated.
• Parameters contain no space characters either.
• Commands and parameters are case insensitive.

5.3 List of available commands
In the description of the commands, number parameters are designated by an
n, optional parameters are designated by enclosing brackets [] and choices
between possible values are designated by a slash /.

5.3.1 Version
 Parameters: n.n

The first thing that a client should do after connecting to the RT Server is to
send the string “Version 1.0” to the server. This will ensure that the protocol
described in this document is followed by the server.

Example: “Version 1.0”

 RTC3D Protocol
 Revision 004

 8/19

5.3.2 SetByteOrder
Parameters: BigEndian / LittleEndian
The second thing a client should do after connecting to the RT Server is to
change the byte order (unless the client uses Big Endian data, that is).

NB: Only some of the data sent by the server is affected by this setting. Most
importantly, the general-purpose data packet header is never affected by it.
See the 4.3 Byte order.

Example: “SetByteOrder LittleEndian”

5.3.3 SendParameters
Parameters: [All] [General] [3D] [Analog] [Force] [6D]
[Events]
This command retrieves the settings for the requested component(s) of the RT
Server in XML format. The XML parameters are described in the 6 XML
parameters section.
As default, it sends ‘All’ data if not specified otherwise.

Example: “SendParameters 3D Force”

5.3.4 SendCurrentFrame
Parameters: [All] [3D] [Analog] [Force] [6D]
This command returns the current frame of real time data from the server.
Points worth noting are:

• The frame is composed of the parts specified in the parameters to the
command. The exact layout of the data frame in different situations is
described in the 7 Data frames section.

• If there is no ongoing measurement (either it has not started or it has
already finished), a special type of data frame is sent to the client (see
the 7 Data frames section).

• If a measurement is ongoing but there is no new frame of data
available, the server waits until the next frame of data is available
before sending it to the client.

• As default, it sends ‘All’ data if not specified otherwise.

Example: “SendCurrentFrame 3D Analog”

 RTC3D Protocol
 Revision 004

 9/19

5.3.5 StreamFrames
Parameters: FrequencyDivisor:n / Frequency:n / AllFrames [All]
[3D] [Analog] [Force] [6D] [Events]
 or
Parameters: Stop

This command makes the RT Server start streaming data frames in real time.
Points worth noting are:

• Each frame is composed of the parts specified in the parameters to the
command. The exact layout of the data frame in different situations is
described in the 7 Data frames section.

• The rate at which the frames are sent depends on several factors:
o The measurement frequency used when acquiring the

slowest data frame component specified to be included in the
transmitted frames.
The transmission rate cannot be greater than this frequency.

o The real time processing frequency set on the server. This
may differ greatly from the measurement frequency. For
example the server may be measuring at 1000 Hz but trying to
calculate real time frames only at 50Hz. The transmission rate
cannot be greater than this frequency either.

o The processing time needed for each frame of data on the
server. This may also be a limiting factor – The server may not
have time to process and transmit frames at the rate specified
as the real time processing frequency.

o The frequency specified by the client.
The client has three ways of specifying the preferred data rate
of the server. If the client specifies a higher rate than it can
handle in real time buffering will occur in the TCP/IP stack at
the client side and the client will experience lagging.

� FrequencyDivisor:n
With this setting, The RT Server transmits every n:th
processed real time frame to the client. Please note that
this may not be the same as every n:th frame of the
measurement (se real time processing frequency
above).
Example: The RT Server is measuring in 200 Hz and
real time tracking in 100 Hz. If a client specifies
“FrequencyDivisor:4” the server will send data at a rate
of 25Hz.

� Frequency:n
With a specific frequency setting, the RT Server will

 RTC3D Protocol
 Revision 004

 10/19

transmit frames at a rate of approximately n Hz.
Example: The server is measuring in 200 Hz and real
time tracking in 100 Hz. If a client specifies
“Frequency:60” the server will send data at an
approximate rate of 60Hz. This means that usually
every other frame is transmitted, but once in a while
two frames in a row are transmitted (to reach 60Hz
instead of 50).

� AllFrames
When a client specifies AllFrames in the
StreamFrames command, every real time frame
processed by the RT Server is transmitted to the client.

• When the measurement is finished, or has not yet started, a special
data frame signaling that no data is available, is sent to the client.

• To stop the data stream before it has reached the end of the
measurement or to prevent data from being sent if a new measurement
is started after the first was finished, one can send the StreamFrames
command again, specifying the Stop parameter (ie “StreamFrames
Stop”).

• As default, it sends ‘All’ data if not specified otherwise.

Example: “StreamFrames Frequency:30 3D Analog”

5.3.6 Bye
This command lets server know the client is disconnecting.

6 XML parameters
XML is used to exchange parameters between the server and the client. This
has several benefits, including extensibility. Clients should not assume that
the XML sent by the server looks exactly like the examples below – there
may be any number of other items included as well, and there may be
differences in white-space etc, but if you use a standard XML parser to look
for the items you are interested in this will not be a problem.

When requesting more than one type of parameters at the same time, all of
them are placed in the same <RT_Parameters Ver=‘1.00’> block. Their
order is not defined.

The command “SendParameters” without any parameters sends all
parameters described below.

 RTC3D Protocol
 Revision 004

 11/19

6.1 General parameters
In response to the command “SendParameters General” the RT Server will
reply with the following string of XML:

<RT_Parameters Ver=’1.00’>
 <General>

<Server>
 <Name></Name>
 <Ver>1.02.03</Ver>
 <IPadd>192.168.0.20</IPadd>
 <Port>12345</Port>
 <Stats>
 <FramesSent>123456</FramesSent>
 <FramesPerSec>33.12</FramesPerSec>
 </Stats>
</Server>

 </General>
</RT_Parameters>

The general parameters respond with the basic information on server and its
average streaming performance during a session.

6.2 3D parameters
In response to the command “SendParameters 3D” the RT Server will reply
with the following string of XML:

<RT_Parameters Ver=’1.00’>
 <The_3D>
 <Frequency>60.00</Frequency>

<Unit>mm</Unit>
 <Markers>

 <Marker id = ‘1’>
 <Label>marker 1</Label>
 <Description> </Description>

 </Marker>
 </Markers>
 </The_3D>
</RT_Parameters >

It assumes all markers will be measured in the same units. The default unit is
”mm”.

The labels are the names of the markers in the current measurement.

Note: XML element names can’t begin with a number, that’s why the
element for 3D parameters is called The_3D.

 RTC3D Protocol
 Revision 004

 12/19

6.3 6D parameters
Some systems can provide more accurate position of a rigid body tool than
that computed on the basis of marker positions alone. It would be beneficial
to be able to exploit such feature by being able to directly read the
transformation of such tools in addition to 3D information of contained
markers.
<RT_Parameters Ver=‘1.00’>
<The_6D>
 <Frequency>60.00</Frequency>
 <Tools>
 <Tool id=‘1’>

 <Label> </Label>
 <Description> </Description>
 <Markers>
 <Marker id=‘12’> </Marker>
 <Marker id=‘14’> </Marker>
 <Marker id=‘20’> </Marker>

</Markers>
 </Tool>

</Tools>
<The_6D>
</RT_Parameters>

Transformation data items correspond to tools listed in this section. Markers
listed as part of a tool are referenced in the order as defined in a tool
definition.

6.4 Analog parameters
In response to the command “SendParameters Analog” the RT Server will
reply with the following string of XML:

<RT_Parameters Ver=‘1.00’>
 <Analog>
 <Channels>

 <Channel id = ‘1’>
 <Label>EMG1</Label>
 <Description> </Description>
 <Unit>mV</Unit>

<Frequency>2400.00</Frequency>
 </Channel>

 </Channels>
 </Analog>
</RT_Parameters>

Analog data can be in general measured in different units per
channel. The default unit is ”mV” .

 RTC3D Protocol
 Revision 004

 13/19

6.5 Force parameters
In response to the command “SendParameters Force” the RT Server will
reply with the following string of XML:

<RT_Parameters Ver=‘1.00’>
 <Force>
 <Plates>
 <Plate id = ‘1’>
 <Frequency>2400.00</Frequency>

 <Label>First force plate</Label>
 <Location>
 <Corner id=‘1’>

 <Unit>mm</Unit>
 <Point>

 <X>1000.00</X>
 <Y>0.00</Y>
 <Z>0.00</Z>

 </Point>
 </Corner>
 <Corner id=‘2’>
 <Unit>mm</Unit>
 <Point>

 <X>1600.00</X>
 <Y>0.00</Y>
 <Z>0.00</Z>

 </Point>
 </Corner>
 <Corner id=‘3’>
 <Unit>mm</Unit>
 <Point>

 <X>1600.00</X>
 <Y>400.00</Y>
 <Z>0.00</Z>

 </Point>
 </Corner>
 <Corner id=‘4’>
 <Unit>mm</Unit>
 <Point>

 <X>1000.00</X>
 <Y>400.00</Y>
 <Z>0.00</Z>

 </Point>
 </Corner>
 </Location>

 <Origin>
 <Unit>mm</Unit>
 <Point>

 <X>-4.00</X>
 <Y>5.00</Y>
 <Z>-40.00</Z>

 </Point>
 </Origin>
 <Channels>
 <Channel id = ‘1’>
 <Unit>N</Unit>
 <Label>Force X </Label>
 </Channel>

 <Channel id = ‘2’>

 RTC3D Protocol
 Revision 004

 14/19

 <Unit>N</Unit>
 <Label> Force Y </Label>
 </Channel>

 .
.
.

 <Channel id = ‘6’>
<Unit>Nm</Unit>

 <Label>Moment Z</Label>
 </Channel>

 <Unit>Nm</Unit>
 <Label>Moment 1</Label>

 </Channel>

 </Channels>
 <AnalogChannels>

<Channel id=’ analog channel id’> </Channel>
<Channel id=’6’></Channel>
<Channel id=’7’></Channel>
<Channel id=’8’></Channel>
<Channel id=’8’></Channel>
<Channel id=’10’></Channel>

 <AnalogChannels>
 <ExcitationVoltage>5</ExcitationVoltage>
 <AmplifierGain>4000</AmplifierGain>
 <Calibration_Matrix>
 <Unit>microV</Unit>
 <Row id=‘1’>
 <Col id=‘1’>1.00</Col>
 <Col id=‘2’>0.00</Col>
 <Col id=‘3’>0.00</Col>
 <Col id=‘4’>0.00</Col>
 <Col id=‘5’>0.00</Col>
 <Col id=‘6’>0.00</Col>
 </Row>
 </Calibration_Matrix>
 </Plate>
 </Plates>
 </Force>
</RT_Parameters>

The parameters for force plates follow roughly the standard of the C3D file
format (www.c3d.org). The server is expected to transform all force plate
signals to the force and moment values and there is no need for any
conversion on the client side. If the client is interested in raw analog data
from force plate, AnalogChannels section contains id’s of the corresponding
analog channels.

6.6 Events Parameters
In response to the command “SendParameters Events” the RT Server will
reply with the following string of XML describing what types of events it is
ready to share with a client:

<RT_Parameters Ver=’1.00’>

<Events>
 <Event id=’0x123456’>

 RTC3D Protocol
 Revision 004

 15/19

 <Label>Button</Label>
 <Description>Button action</Description>

 <Params>
 <Param id=’1’>
 <Type>int</Type>
 <Description>Button id number

</Description>
 </Param>

 <Param id=’2’>
 <Type>int</Type>
 <Description>ON/OFF state</Description>

<ExpValues>
 <ExpValue id=’1’>
 <Value>1</Value>

 <Label>ON</Label>
 <Description>Button was pressed
 </Description>
 </ExpValue>

 <ExpValue id=’2’>
 <Value>0</Value>

 <Label>OFF</Label>
 <Description>Button was released
 </Description>
 </ExpValue>
</ExpValues>

 </Param>
 </Params>

 </Event>
 </Events>
</RT_Parameters>

The event is identified by its ID unique for the particular server manufacturer
only. The event can contain up to 3 optional parameters to further describe
the event. Event Parameter section’s role is to allow client user to see what
kinds of events are available and select its own actions for those hshe’s
interested in.
Parameter uses 4 bytes interpreted as either (signed) “int” (default), “float” or
“string” (4 characters long, no termination ‘\0’).

7 Data frames
Each data frame is made up of zero or more components, as specified in the
commands SendCurrentFrame or StreamFrames. The frame starts with a
Count field that specifies the number of components in the frame. Every
component starts with a general component header – identical to the general-
purpose packet header described above.
NB: The general component header – just like the whole data frame – follows
the byte order specified by the client through the SetByteOrder command.

 RTC3D Protocol
 Revision 004

 16/19

7.1 General data frame layout

Data frame layout:

Size in
bytes

Name Description

4 ComponentCount The number of data components in the data
packet.

Repeat ComponentCount times:

4 ComponentSize The size of the component including the
ComponentType, ComponentSize,
FrameNumber, padding fields. Note: Byte order
depends on what was requested by
SetByteOrder.

4 ComponentType The type of the component. Defined below.
Note: Byte order depends on what was
requested by SetByteOrder.

4 FrameNumber The number of this frame.
8 TimeStamp microseconds from start
Size –
20

ComponentData Component-specific data. Defined below.

7.2 Data frame component types
The ComponentType field of the data component header is a number that
should be interpreted according to the table below. These are the data frame
component types that are defined in the protocol so far.

Type
no

Name Description

1 3D 3D values
2 Analog Analog values
3 Force Force values
4 6D Transformation values
5 Event IDs and parameters of events

 RTC3D Protocol
 Revision 004

 17/19

7.3 The 3D data frame component
The markers of the 3D data always follow the labels of the 3D parameters.
The same number of markers are sent each frame, and in the same order as
the labels of the 3D parameters. If a marker is missing from the frame, its X,
Y and Z coordinates will have all their 32 bits set – this signifies a negative
quiet Not-A-Number according to the IEEE 754 floating point standard.

Size in
bytes

Name Description

4 MarkerCount The number of markers in this frame.

Repeated MarkerCount times:

4 X X coordinate of the marker, 32-bit float.
4 Y Y coordinate of the marker, 32-bit float.
4 Z Z coordinate of the marker, 32-bit float.
4 Reliability Residual

7.4 The Analog data frame component

Size in
bytes

Name Description

4 ChannelCount The number of channels in this frame.

Repeated ChannelCount times:

4 Voltage The voltage of the channel in this frame.

7.5 The Force data frame component

Size in
bytes

Name Description

4 PlateCount The number of force plates in this frame.

Repeated MarkerCount times:

4 FX X coordinate of the force, 32-bit float.
4 FY Y coordinate of the force, 32-bit float.
4 FZ Z coordinate of the force, 32-bit float.
4 MX X coordinate of the moment, 32-bit float.
4 MY Y coordinate of the moment, 32-bit float.
4 MZ Z coordinate of the moment, 32-bit float.

 RTC3D Protocol
 Revision 004

 18/19

X, Y, Z of the force application point are calculated based on the force, the
moment and the force plate position so it is wasteful to stream this higher
level information.

7.6 The 6D data frame component

Size in
bytes

Name Description

4 ToolCount The number of tools reported in this frame.

Repeated ToolCount times:

4 Q0 Quaternion rotation q0, 32-bit float
4 Qx Quaternion rotation qx, 32-bit float
4 Qy Quaternion rotation qy, 32-bit float
4 Qz Quaternion rotation qz, 32-bit float
4 X X coordinate of the translation, 32-bit float.
4 Y Y coordinate of the translation, 32-bit float.
4 Z Z coordinate of the translation, 32-bit float.
4 Error RMS marker fit to rigid body error

Transformation is composed of quaternion rotation and translation. Quaternion rotation
vector should is normalized |Q| = 1.

7.7 The Event data frame component
Events are sent by server. Their meaning is defined by manufacturer in the
6.6 Events Parameters section. If the client doesn’t recognize the event, it
should ignore it.

Size in
bytes

Name Description

4 EventCount The number of events reported in this frame.

Repeated EventCount times:

4 ID integer ID of the event
4 param1 Optional event parameter (0xFFFFFFFF if unused

is expected)
4 param2 Optional event parameter (0xFFFFFFFF if unused

is expected)
4 param3 Optional event parameter (0xFFFFFFFF if unused

 RTC3D Protocol
 Revision 004

 19/19

is expected)

Since each server can use its own event definitions, the client user will first
have to review the Event parameters sent by the server and assign them to
some client actions

