pyglet Programming Guide

pyglet Programming Guide

Table of Contents

V< [olo o PSP PPPPTTR Vii
S o 0] 1 L O P PP TTPPPPTTR Vii
TahIE Of CONENES ... ettt e et e e Vii

FaEs = = o) o PO PPPPTTR 1
INSEAIING USING SELUD. DY eevtneeeiiti ettt ettt ettt ettt ettt e e et et et e e e e e e nna e eennes 1
Installation from the rUNtiME EOOSvvuiiiii e 1

WIriting @ pYglet 8PPIICALIONuiieiiee ettt et anaas 2
[L= 1 o T VYo o PPN 2
IMBOE VIBWET ...ttt et ettt ettt ettt e e e et e e e n e e eeaans 2
Handling mouse and Keyboard GVENEScoiuuiiiiiiiii e 3
Playing SOUNAS @NO IMUSICoeviiieieiti ettt e et e e e e e enbe e e eneans 4
WREFE 0 NEXE? ..ottt ettt e e et e e e et et e e et 5

Creating an OPENGL CONEEXE ...cvuvuiiiiiti ettt ettt e e et e et e e e et e e e eeba e e eeetaaaeeenes 6
Displays, screens, configs and CONLEXESccuuuiiiiiiiieiiii e 6

COoNtEXES AN CONTIGS ... eeeerenee ettt ettt e e et et e e e e e enees 6
DISPIAYS ettt 7
e (= < 0SSP P T PPTP PP PPN 7
OpenGL cONfiguration OPLIONSu.eieitieeeett ettt e et et e et e e et e e e et e e eaean s 8
The default CONfIQUIALIoNcoouuuiiiiiii e 10
Simple context CONFIGUIBLIONiiiiitieeieit et e s 10
Selecting the best CONFIQUIBLIONccuuuiiiiiiie e 11
Sharing objects DEWEEN CONLEXEScoouiiieieii e 12

The OPENGL INEEITACE ittt ettt ettt ettt e e e e e eenans 14
USING OPENGL ...ttt ettt e et et e e et et e e e e et e e ena e aees 14
RESIZING the WINAOWcoiiiiieiii e 15
EITOr CRECKING ...eeee ettt ettt et e e e enaans 15
USING eXteNSION FUNCLIONSiiiiiiec it 16
USING MUILIPIE WINTOWS ...ttt e s 16
AGL, GLX 8N WGL ...ttt et e e et e e e e e eee 17

GRAPNICS ...t e e e et ettt e e 18
Drawing PrimitiVES ittt 18
VEEX GIITIDULES ...ttt e ettt e e e et e eeeaaa e e 19
VEITEX [ISES ettt ettt et e ettt et et e e e e e e e 20

UPAtiNg VEITEX TBLALeevvneeeiiis ettt ettt e e et e e et e eeera e eeees 21
DELB USBZE ...evu ettt 22
INAEXEA VEITEX 1SS ... ettt e 22
BatChed renderingooeuuieiiiii e 22
Setting the OPENGL SHALEiieiii e 23
HIEIarChiCal SLALEceveiiiiii e 24
SOMING VEITEX TISES 1.ttt 25
Batches and groups in other MOdUIEScoouiiiiiiiii e 25

WVINOOWING .ttt ettt ettt e et et e e et et e e et et e e e e eba s 26

Creating @ WINCGOWuiiiit ettt e ettt ettt e et e e e e e ena s 26
CoNtexXt CONFIQUIBLIONcveeeeeieei ettt e et e e 26
FUITSCIEEN WINGOWS ...ttt ettt 27

SIZE @NA POSITION ..ttt ettt ettt 27

APPEAMBINCE ...ttt ettt 28
WINAOW SEYIE .ottt et e et e e e e et e e e e et e eenes 28
1071 (oo H PP PPPT 29
Lot o PPN 29

VISIDITEY e et 30

pyglet Programming Guide

ST =5 T o AT/ T o Lo P 30
Windows and OpPENGL CONLEXESuuuiiiiieiiiei e ee e e e e e e e e et e e e et e e e eanns 31
(D010 Y= o U1 1= 11 0T [P PN 31

Vertical retrace SYNChrONISAEIONccuuiiiiieii e e e e e e e e eees 31

RN LR o 1oz o aIN=Y /= o o o o 32
Customising the EVENE 100Dccvviiiiii i e eaas 32
[V o] o == 0| P 32

Overriding the default idle POLICYevvniiiii e 33
Dispatching events ManUallyc..iiiiiiiiiiie e e 33

The pyglet eVent frameWOrKuiiiiiiii e e e e e e e e e e et eeanees 35
Setting eVENt NaNAIErS ... oo 35
Stacking EVENt NANAIEIS ... ovvi i e e e e e 35
Creating your own event diSPaiChEYccouuiiiiiiiiii e e 37
Implementing the ObServer Patternoovii i e 38
DOCUMENLING EVENESiiiiiiiie e e et e e e e e e e e e e e et e e e et e e et e eenaas 39

Working With the Keyboardoiiiiiiii e 40
=Y 00T (o = Y= o £ 40
Defined K&y SYMDOIScoviiii e 40

oo) 1= =S SPPTTRSPPPIN 41
User-defined Key Symbolsoiiiiiii 42
ReMEMDBEiNG KEY SAEvuiiii i 42

Text and MOLION EVENES ...coieviieeiii e et e e et e e et e e e e era s 42
IMIOLION EVENES ...t ee et e et e e e et e e e e et e e e aate e e e estnaaeaens 43

=Y o 0T o =) (o LU Y P 44
WOrKing With the MOUSEiiii i e e e e e e e e et e e aaeees 46
IMIOUSE BVENES ...ttt ettt et et et e e e et et e e e en s e e e e e e enaennes 46
Changing the MOUSE CUISOKuuiiiiiieii e e e e e e e e e e e et eeaneeeaes 48
MOUSE EXCIUSIVITY ©.ivtiiiiie e e e e e e e e e e e r e et e e e e et e e st e e et e e e et e eaaneeeens 49
KegpiNg track Of 1M ...ciue i e e e e aaas 50
Calling functions PeriodiCallycc.iiiiiiiiiii e 50
ANIMation tECANIGUESiii i e e e e e e e e e e et e e e eanas 51

THE FTaME FAEE ..vi e e e e e e e 51
Displaying the frame ratecc.uiiiiiiie e e 51
USEr-defiNed ClOCKSvuiiiiiiii et e e e e e es 52

[T ol o (= PP 53
S a0 Lo G (=210 (= T oo 53

The document/layout MOTE]couuiiiiii e e e 53
DOCUMENES ...ttt ettt et e e e e e e e e e e e e e e e e nneees 54

LB OULS ..ttt 54

00Tz <0 = PSP 55
CharaCter SEYIES ..vuu i e 55

Paragraph SLYIES . .cov i 56

F N K1 o 1U 1< o = PP 56

o 1 SO SPPPTTN 58

CUSEOM EIBIMENES ...eiie et e et e e et e e et r e e e et eeeeaen e 58
USEr-EITADIE TEXE ..eievi e 59
Loading SYSIEM fONES ...uuiii i e 59

00| A= = PSPPSRI 60

[0 g1 === 1 1o o PP 60
Determining fONt SIZEciiv i 60

[Io7="o (1 0To Jot 0 (o] ¢ 1N {0) (=3P 61

ST o0 (=0 I8 o)1 B0 £ 4 £ 61

OpenGL fONt CONSIAEIAIONSuuiiii i e e e e e e e st e e e e aa e eeas 62
CoNtEXt AFINITY L.ieiei i 62

pyglet Programming Guide

2] oo I = =SSP 62

0 07T [PPSR 63
[Ior=o (1070 =g TN T 0= (= N 63
SUPPOIEd IMAGgE TOMMALSiiii i e e e e e e e e e et e e aaeees 64
WOTKING WIth IMBOESceie e e e e e et eeaaaaee 65
The Abstractimage NErarChycoouiiiiii i e 66
Accessing or providing PIXEl datalveiuiieiiiiiei e 67
PerformManCe COMCEBINScuuiii ettt et e e et e e e eaa e eees 67
Image SeqUENCES anNd GIBSESuiiiii e e 68
T paT="o (S0 | oL 69

1 ([0 == PP 70
Texture bins and @tlaSeSuuiiiiii i 71

N 0114 g SPUSPN 71
T = T 7= o = PP 72
(DR o B Y aTo T 0T o (=P 73
S 0]] == 73
Simple image bIITHINGoveeii e 74

(@7 o7 o1 I T 097" 1 1o [75
TEXIUNE QIMENSIONS ...t e e et e et e e e et e e e eatn s e e e eabnneeeees 75
Texture INternal FOrMELiiii e e e 76

S VL aTo = 1117 o (= T 77
IS o0 To = o To IR T (<o SRR 78
F o o I o A= S PSP 78
(D1 o 5o 1o PPN 78
BN A L it 79
AL S A L e 79
LUl £ 0T PP 79
SUPPOMEA MEAIA TYPES .vn it it e e e e e e et e et e et e e et e e e e eanas 79
[Io7="o] 070 0 1= [- U 80
Simple audio Playbackooiuiiii e 81
Controlling Playbackccoiiiiii 81
FaTelolgolo = i1 oo IR/ To U= o TP 83
POSITIONEL BUAIO ..oevvieeiii e e e et 83
YN oo 1oz o g I (== 01U o= 85
(07 o] 00 B =<0 =S 85
(RS o o o= 1o 01~ T PP 86
Specifying the resource Pathoooviiiiii e 86
RN T o T o= o = 87
SAVING USEY PIrEfEIENCES ..uuiitieeiii i e et e e e e e e e e e e e e e e et e e st e e et e e eeanas 87
(1= 010 (o 11 0T I oo K= 89
(D= 010 (o1 010 [@] o= o€ P 89
Error ChECKING ... e e 20

LI = o o 90

I o a0 =TS ot o) o P 90
Platform-specific dEDUGGING . ..vvuiiii i e e e 90
0 PP 90
WWINOOWS ettt e et e e et e e e et e e e et e e e e et e e e e st s 90
Appendix: Migrating to PYGIEE L1 ...oovuiiiiiii e e 91
Compatibility and depreCationoceuuiiiiiieiiii e e 91
Deprecated MEtNOGSc.uuiiiiici e e e 91
New features replacing standard PraCtiCec.uuveiiieeiiieiie e 91
FaaT o T 0T I o)/ o | = P 91

AN o ol 1Tor= o g 1=V = o A Lo o o NP 92
07 o] 0ol 1=-=0 0= J PN 93

pyglet Programming Guide

NEW graphiCS FEAIUINESuuiiiiici e e e e e e e e e et e e eaneens

New text features

(@ 1 L= =TV = 10 =

Vi

Welcome

The pyglet Programming Guide provides in-depth documentation for writing applications that use pyglet.
Many topics described here reference the pyglet API reference, provided separately.

If thisisyour first time reading about pyglet, we suggest you start at Writing a pyglet application.

Sections

* Installation

» Writing apyglet application
 Creating an OpenGL context
* The OpenGL interface

» Graphics

» Windowing

e The application event loop

» The pyglet event framework
» Working with the keyboard
» Working with the mouse

» Keeping track of time
 Displaying text

e |mages

» Sound and video

» Application resources

» Debugging tools

» Appendix: Migrating to pyglet 1.1

Table of contents

* Installation

* Installing using setup.py

« Installation from the runtime eggs
» Writing a pyglet application

* Hello, World

Vii

Welcome

Image viewer
Handling mouse and keyboard events
Playing sounds and music

Where to next?

Creating an OpenGL context

Displays, screens, configs and contexts
 Contexts and configs

» Displays

» Screens

OpenGL configuration options

» Thedefault configuration

Simple context configuration

Selecting the best configuration

Sharing objects between contexts

The OpenGL interface

Using OpenGL

Resizing the window
Error checking

Using extension functions
Using multiple windows

AGL, GLX and WGL

Graphics

Drawing primitives
Vertex attributes
Vertex lists

» Updating vertex data
e Datausage

* Indexed vertex lists

Batched rendering

viii

Welcome

* Setting the OpenGL state
 Hierarchical state
 Sorting vertex lists

Batches and groups in other modules

e Windowing

Creating awindow
 Context configuration
* Fullscreen windows
Size and position
Appearance

« Window style

e Caption

* lcon

Visihbility

Subclassing Window
Windows and OpenGL contexts
« Double-buffering

 Vertical retrace synchronisation

e The application event loop

Customising the event loop
» Event loop events
« Overriding the default idle policy

Dispatching events manually

e The pyglet event framework

Setting event handlers

Stacking event handlers

Creating your own event dispatcher
 Implementing the Observer pattern

« Documenting events

Welcome

» Working with the keyboard
« Keyboard events
» Defined key symbols
* Modifiers
 User-defined key symbols
* Remembering key state
» Text and motion events
* Motion events
» Keyboard exclusivity
» Working with the mouse
* Mouse events
« Changing the mouse cursor
« Mouse exclusivity
» Keeping track of time
 Calling functions periodically
« Animation techniques
e Theframerate
» Displaying the framerate
* User-defined clocks
 Displaying text
e Simpletext rendering
¢ The document/layout model
» Documents
« Layouts
» Formatted text
e Character styles
 Paragraph styles
* Attributed text
e HTML

* Custom elements

Welcome

User-editable text

Loading system fonts

Font sizes

* Font resolution

» Determining font size
Loading custom fonts
 Supported font formats
OpenGL font considerations
 Context affinity

» Blend state

Images

Loading animage

Supported image formats
Working with images

The Abstractl mage hierarchy
Accessing or providing pixel data
* Performance concerns
Image sequences and atlases
e Imagegrids

» 3D textures

* Texture bins and atlases
Animations

Buffer images

Displaying images

e Sprites

« Simpleimage blitting
OpenGL imaging

+ Texture dimensions

» Textureinternal format

Xi

Welcome

e Saving an image
+ Sound and video
» Audio drivers
* DirectSound
¢ OpenAL
« ALSA
* Linux Issues
* Supported mediatypes
» Loading media
» Simple audio playback
« Controlling playback
* Incorporating video
* Positional audio
 Application resources
 Loading resources
 Resource locations
 Specifying the resource path
e Multiple loaders
» Saving user preferences
 Debugging tools
» Debugging OpenGL
« Error checking
e Tracing
» Tracing execution
 Platform-specific debugging
* Linux
* Windows
» Appendix: Migrating to pyglet 1.1

» Compatibility and deprecation

Xii

Welcome

Deprecated methods

New features replacing standard practice
* Importing pyglet

« Application event loop

* Loading resources

New graphics features

New text features

Other new features

Xiii

Installation

pyglet does not need to be installed. Because it uses no external libraries or compiled binaries, you can
run it in-place. Y ou can distribute the pyglet source code or runtime eggs alongside your application code
(see Distribution).

You might want to experiment with pyglet and run the example programs before you install it on
your development machine. To do this, add either the extracted pyglet source archive directory or the
compressed runtime egg to your PYTHONPATH.

On Windows you can specify this from a command line:
set PYTHONPATH c:\ pat h\to\ pygl et-1. 1\ ; %°PYTHONPATH%
On Mac OS X, Linux or on Windows under cygwin using bash:

set PYTHONPATH / pat h/ t o/ pygl et - 1. 1/ : SPYTHONPATH
export PYTHONPATH

or, using tcsh or avariant:
set env PYTHONPATH / pat h/ t o/ pygl et - 1. 1/ : $PYTHONPATH

If you have downloaded a runtime egg instead of the source archive, you would specify the filename of
theegginplaceof pygl et - 1. 1/ .

Installing using setup.py

To make pyglet available to all users, or to avoid having to set the PYTHONPATH for each session, you
can install it into your Python'ssi t e- packages directory.

From acommand prompt on Windows, change into the extracted pyglet source archive directory and type:
pyt hon setup.py install

On Mac OS X and Linux you will need to do the above as a priveleged user; for example using sudo:
sudo python setup.py install

Once installed you should be able to i mport pygl et from any terminal without setting the
PYTHONPATH.

Installation from the runtime eggs

If you have setuptools installed, you can install or upgrade to the latest version of pyglet using
easy_install:

easy_install -U pyglet
On Mac OS X and Linux you may need to run the above as a priveleged user; for example:

sudo easy_install -U pyglet

Writing a pyglet application

Getting started with a new library or framework can be daunting, especially when presented with alarge
amount of reference material to read. This chapter gives a very quick introduction to pyglet without
covering any of the details.

Hello, World

WEe'll begin with the requisite "Hello, World" introduction. This program will open a window with some
text in it and wait to be closed. You can find the entire program in the examples/programming_guide/
hello_world.py file.

Begin by importing the pyglet package:

i mport pygl et

Create aWindow by calling its default constructor. The window will be visible as soon as it's created, and
will have reasonable default values for al its parameters:

wi ndow = pygl et.w ndow. W ndow()

Todisplay thetext, we'll createalLabel. Keyword argumentsare used to set thefont, position and anchorage
of the label:

| abel = pyglet.text.Label ('Hello, world",
font _name="Ti mes New Roman',
font _size=36,
x=wi ndow. wi dt h//2, y=wi ndow. hei ght//2,
anchor_x='center', anchor_y='center')

Anon_draw event is dispatched to the window to give it a chance to redraw its contents. pyglet provides
several ways to attach event handlers to objects; a simple way is to use a decorator:

@ ndow. event
def on_draw():
wi ndow. cl ear ()

I abel . draw()
Withinthe on_dr awhandler the window is cleared to the default background color (black), and the label
isdrawn.
Finaly, call:

pygl et. app. run()

To let pyglet respond to application events such as the mouse and keyboard. Y our event handlers will now
be called as required, and the run method will return only when all application windows have been closed.

Note that earlier versions of pyglet required the application developer to write their own event-handling
runloop. Thisis still possible, but discouraged; see The application event loop for details.

Image viewer

Most games will need to load and display images on the screen. In this example we'll load an image from
the application's directory and display it within the window:

Writing a pyglet application

i mport pygl et

wi ndow = pygl et.w ndow. W ndow()
i mge = pyglet.resource.imge(' kitten.jpg')

@ ndow. event
def on_draw():
wi ndow. cl ear ()
i mge.blit(0, 0)

pygl et. app. run()

We used the pygl et.resour ce.image function to | oad the image, which automatically locatesthefilerelative
to the source file (rather than the working directory). To load an image not bundled with the application
(for example, specified on the command line, you would use pyglet.image.load).

The Abstractlmage.blit method draws the image. The arguments (0, 0) tell pyglet to draw the image
at pixel coordinates 0, O in the window (the lower-left corner).

The complete code for this exampleislocated in examples/programming_guide/image_viewer .py.

Handling mouse and keyboard events

So far the only event used isthe on_draw event. To react to keyboard and mouse events, it's necessary to
write and attach event handlers for these events as well:

i mport pygl et

wi ndow = pygl et.w ndow. W ndow()

@ ndow. event
def on_key press(synbol, nodifiers):
print 'A key was pressed'

@ ndow. event
def on_draw):
wi ndow. cl ear ()

pygl et. app. run()

Keyboard events have two parameters:. the virtual key symbol that was pressed, and a bitwise combination
of any modifiersthat are present (for example, the CTRL and SHI FT keys).

The key symbols are defined in pyglet.window.key:

from pygl et.w ndow i mport key

@ ndow. event
def on_key press(synbol, nodifiers):

i f synmbol == key. A

print ' The "A" key was pressed.'
elif synmbol == key. LEFT:

print 'The left arrow key was pressed.’
elif synmbol == key. ENTER:

Writing a pyglet application

print ' The enter key was pressed.’
See the pyglet.window.key documentation for a complete list of key symbols.
Mouse events are handled in a similar way:
from pygl et. wi ndow i nport nouse
@ ndow. event
def on_npuse_press(x, y, button, nodifiers):
i f button == nopuse. LEFT:

print 'The | eft nouse button was pressed.’

Thex andy parameters give the position of the mouse when the button was pressed, relative to the lower-
left corner of the window.

There are more than 20 event types that you can handle on a window. The easiest way to find the event
name and parameters you need is to add the following line to your program:

wi ndow. push_handl er s(pygl et. wi ndow. event . W ndowEvent Logger ())
Thiswill cause all events received on the window to be printed to the console.

An example program using keyboard and mouse events isin examples/programming_guide/events.py

Playing sounds and music

pyglet makesit easy to play and mix multiple sounds together in your game. The following example plays
an MP3file>:

i mport pygl et

musi ¢ = pygl et.resource. medi a(' nusi c. np3')
nmusi c. pl ay()

pygl et. app. run()

As with the image loading example presented earlier, pyglet.resource.media locates the sound file in the
application's directory (not the working directory). If you know the actual filesystem path (either relative
or absolute), use pyglet.media.load.

Short sounds, such as a gunfire shot used in a game, should be decoded in memory before they
are used, so that they play more immediately and incur less of a CPU performance penalty. Specify
st r eam ng=Fal se inthiscase

sound = pygl et. resource. nedi a(' shot.wav', stream ng=Fal se)
sound. pl ay()

Theexamples/media_player.py example demonstrates playback of streaming audio and video using pyglet.
The exampl es/noi sy/noi sy.py example demonstrates playing many short audio samples simultaneously, as
in agame.

SMP3 and other compressed audio formatsrequire AVbinto beinstalled (thisisthe default for the Windowsand Mac OS X installers). Uncompressed
WAV files can be played without AV bin.

Writing a pyglet application

Where to next?

The examples presented in this chapter should have given you enough information to get started writing
simple arcade and point-and-click-based games.

The remainder of this programming guide goes into quite technical detail regarding some of pyglet's
features. While getting started, it's recommended that you skim the beginning of each chapter but not
attempt to read through the entire guide from start to finish.

To write 3D applications or achieve optimal performance in your 2D applications
youll need to work with OpenGL directly. The canonical references for
OpenGL ae The OpenGL Programming Guide [http://opengl.org/documentation/books/
#the opengl_programming_guide the official_guide to learning_opengl version] and The OpenGL
Shading Language [http://opengl.org/documentation/books/
#the opengl_shading_language 2nd_edition].

There are numerous examples of pyglet applicationsin the exanpl es/ directory of the documentation
and source distributions. Keep checking http://www.pyglet.org/ for more examples and tutorials as they
are written.

http://opengl.org/documentation/books/#the_opengl_programming_guide_the_official_guide_to_learning_opengl_version
http://opengl.org/documentation/books/#the_opengl_programming_guide_the_official_guide_to_learning_opengl_version
http://opengl.org/documentation/books/#the_opengl_programming_guide_the_official_guide_to_learning_opengl_version
http://opengl.org/documentation/books/#the_opengl_shading_language_2nd_edition
http://opengl.org/documentation/books/#the_opengl_shading_language_2nd_edition
http://opengl.org/documentation/books/#the_opengl_shading_language_2nd_edition
http://opengl.org/documentation/books/#the_opengl_shading_language_2nd_edition
http://www.pyglet.org/

Creating an OpenGL context

This section describes how to configure an OpenGL context. For most applications the information
described here is far too low-level to be of any concern, however more advanced applications can take
advantage of the complete control pyglet provides.

Displays, screens, configs and contexts

|
|
: Screen Template Config
|
‘ E
|
Platform : e
|
|
|
|

Complete Config

B double_buffer = True
Window rod size o8
g 5
lue_size =
aux_buffers =
Context

Flow of construction, from the singleton Platform to a newly created Window with its
Context.

Contexts and configs

When you draw on a window in pyglet, you are drawing to an OpenGL context. Every window has its
own context, which is created when the window is created. Y ou can access the window's context via its
context attribute.

The context is created from an OpenGL configuration (or "config"), which describes various properties of
the context such as what color format to use, how many buffers are available, and so on. Y ou can access
the config that was used to create a context via the context's config attribute.

For example, here we create awindow using the default config and examine some of its properties:

>>> jnport pygl et

>>> wi ndow = pygl et.w ndow. W ndow()
>>> context = wi ndow. cont ext

>>> config = context.config

>>> confi g. doubl e_buffer

c_int(1)

>>> config.stereo

c_int(0)

>>> config.sanple_buffers

c_int(0)

Note that the values of the config's attributes are al ctypes instances. This is because the config was not
specified by pyglet. Rather, it has been selected by pyglet from alist of configs supported by the system.
You can make no guarantee that a given config is valid on a system unless it was provided to you by
the system.

Creating an OpenGL context

pyglet ssimplifiesthe process of selecting one of the system's configs by allowing you to create a"template”
config which specifies only the values you are interested in. See Smple context configuration for details.

Displays

The system may actually support several different sets of configs, depending on which display deviceis
being used. For example, a computer with two video cards would have not support the same configs on
each card. Another exampleisusing X 11 remotely: the display devicewill support different configurations
than the local driver. Even a single video card on the local computer may support different configs for
the two monitors plugged in.

In pyglet, a"display" isacollection of "screens' attached to asingle display device. On Linux, the display
device corresponds to the X 11 display being used. On Windows and Mac OS X, there isonly one display
(as these operating systems present multiple video cards as asingle virtual device).

There is a singleton class Platform which provides access to the display(s); this represents the computer
on which your application is running. It is usually sufficient to use the default display:

>>> platform = pygl et.w ndow. get_pl atform)
>>> display = platformget _default _display()

On X11, you can specify the display string to use, for example to use a remotely connected display. The
display string isin the same format as used by the DI SPLAY environment variable:

>>> display = platformget_display('renpte:1.0")

Y ou use the same string to specify a separate X 11 screen &:

>>> display = platformget_display(':0.1")

Screens

Once you have obtained a display, you can enumerate the screens that are connected. A screen is
the physical display medium connected to the display device; for example a computer monitor, TV
or projector. Most computers will have a single screen, however dual-head workstations and |aptops
connected to a projector are common cases where more than one screen will be present.

In the following example the screens of a dual-head workstation are listed:

>>> for screen in display.get _screens():
print screen

Xl'i bScreen(screen=0, x=1280, y=0, wi dth=1280, hei ght=1024, xi neranma=1)
Xl'i bScreen(screen=0, x=0, y=0, wi dth=1280, hei ght=1024, xi neranma=1)

Becausethisworkstationisrunning Linux, thereturned screensare Xl i bScr een, asubclassof Scr een.
Thescr een andxi ner anma attributes are specific to Linux, butthex, y,wi dt h andhei ght attributes
are present on all screens, and describe the screen’'s geometry, as shown below.

6Assumi ng Xinerama is not being used to combine the screens. If Xinerama is enabled, use screen O in the display string, and select a screen in
the same manner as for Windows and Mac OS X.

Creating an OpenGL context

Xx=0,y=0

x=1280,y=0

height

1024
N
1024

height

1

width = 1280

width = 1280

Example arrangement of screens and their reported geometry. Note that the primary
display (marked "1") is positioned on the right, according to this particular user's

preference.

There is dways a "default" screen, which is the first screen returned by get_screens. Depending on the
operating system, the default screen isusually the one that contains the taskbar (on Windows) or menu bar

(on OS X). You can access this screen directly using get_default_screen.

OpenGL configuration options

When configuring or selecting a Config, you do so based on the properties of that config. pyglet supports
a fixed subset of the options provided by AGL, GLX, WGL and their extensions. In particular, these
constraints are placed on all OpenGL configs:

» Buffers are always component (RGB or RGBA) color, never palette indexed.

e The"level" of abuffer is aways O (this parameter is largely unsupported by modern OpenGL drivers

anyway).

» There is no way to set the transparent color of a buffer (again, this GLX-specific option is not well

supported).

» There is no support for pbuffers (equivalent functionality can be achieved much more simply and

efficiently using framebuffer objects).

The visible portion of the buffer, sometimes called the color buffer, is configured with the following

attributes:

buf fer _si ze

red_si ze, blue_size,

green_si ze,

al pha_si ze

Number of bits per sample. Common values are
24 and 32, which each dedicate 8 bits per color
component. A buffer size of 16 is also possible,
which usually corresponds to 5, 6, and 5 bits of
red, green and blue, respectively.

Usually thereisno need to set thisproperty, asthe
device driver will select a buffer size compatible
with the current display mode by default.

These each give the number of bits dedicated
to their respective color component. Y ou should
avoid setting any of the red, green or blue sizes,
asthese are determined by the driver based onthe
buf f er _si ze property.

Creating an OpenGL context

If you require an apha channel in your color
buffer (for example, if you are compositing
in multiple passes) you should specify
al pha_si ze=8 to ensure that this channel is

created.
sanpl e_buffers and Configures the buffer for multisampling, in
sanpl es which more than one color sample is used to

determine the color of each pixel, leading to a
higher quality, antialiased image.

Enable multisampling by setting
sanpl e_buf f er s=1, then give the number
of samples per pixel to use in sanpl es.
For example, sanpl es=2 is the fastest,
lowest-quality multisample configuration. A
higher-quality buffer (with a compromise in
performance) is possible with sanpl es=4.

Not al video hardware supports multisampling;
you may need to make this a user-selectable
option, or be prepared to automaticaly
downgrade the configuration if the requested one
isnot available.

stereo Creates separate left and right buffers, for use
with stereo hardware. Only specialised video
hardware such as stereoscopic glasses will
support this option. When used, you will need
to manually render to each buffer, for example
using gl DrawBuffers.

doubl e_buf fer Create separate front and back buffers.
Without double-buffering, drawing commands
are immediately visible on the screen, and the
user will notice a visible flicker as the image is
redrawn in front of them.

It is recommended to set
doubl e _buf fer=True, which creates a
separate hidden buffer to which drawing is
performed. When the Window.flip is called, the
buffers are swapped, making the new drawing
visible virtually instantaneously.

In addition to the color buffer, several other buffers can optionally be created based on the values of these
properties:

dept h_si ze A depth buffer is usualy required for 3D
rendering. The typical depth size is 24 hits.
Specify 0 if you do not require a depth buffer.

stencil _size The stencil buffer is required for masking
the other buffers and implementing certain
volumetric shadowing algorithms. The typical

Creating an OpenGL context

stencil size is 8 hits; or specify 0 if you do not

requireit.
accumred_size, The accumulation buffer can be used for simple
accum bl ue_si ze, antialiasing, depth-of-field, motion blur and
accum green_si ze, other compositing operations. Its use nowadays
accum al pha_si ze is being superceded by the use of floating-point

textures, however itisstill apractical solution for
implementing these effects on older hardware.

If you require an accumulation buffer, specify 8
for each of these attributes (the alpha component
is optional, of course).

aux_buffers Each auxilliary buffer is configured the same as
the colour buffer. Up to four auxilliary buffers
can typically be created. Specify 0 if you do not
require any auxilliary buffers.

Like the accumulation buffer, auxilliary buffers
are used less often nowadays as more
efficient techniques such as render-to-texture are
available. They are ailmost universally available
on older hardware, though, where the newer
techniques are not possible.

The default configuration

If you create a Window without specifying the context or config, pyglet will use a template config with
the following properties:

Attribute Value
double buffer True
depth_size 24

Simple context configuration

A context can only be created from a config that was provided by the system. Enumerating and comparing
the attributes of all the possible configs is a complicated process, so pyglet provides a simpler interface
based on "template" configs.

To get the config with the attributes you need, construct a Config and set only the attributes you are
interested in. Y ou can then supply this config to the Window constructor to create the context.

For example, to create awindow with an apha channel:

config = pyglet.gl.Config(al pha_size=8)
wi ndow = pygl et.w ndow. Wndow(confi g=confi g)

It is sometimes necessary to create the context yourself, rather than letting the Window constructor do this
for you. In this case use Screen.get_best_config to obtain a "complete” config, which you can then use
to create the context:

10

Creating an OpenGL context

pl atform = pygl et.w ndow. get _pl atform)
di splay = platform get_default_display()
screen = display.get_default_screen()

tenmpl ate = pyglet.gl. Config(al pha_si ze=8)
config = screen.get_best _config(tenpl ate)
context = config.create_context(None)

wi ndow = pygl et.w ndow. W ndow(cont ext =cont ext)

Note that you cannot create a context directly from atemplate (any Config you constructed yourself). The
Window constructor performs a similar process to the above to create the context if a template config is
given.

Not al configs will be possible on al machines. The cal to get best config will raise
NoSuchConfigException if the hardware does not support the requested attributes. It will never return a
config that does not meet or exceed the attributes you specify in the template.

You can use this to support newer hardware features where available, but also accept a lesser config if
necessary. For example, the following code creates a window with multisampling if possible, otherwise
leaves multisampling off:

tenplate = gl. Config(sanpl e _buffers=1, sanpl es=4)
try:
config = screen.get_best config(tenpl ate)
except pygl et.wi ndow. NoSuchConfi gExcepti on:
tenmplate = gl. Config()
config = screen.get_best config(tenpl ate)
wi ndow = pygl et.w ndow. Wndow(confi g=confi g)

Selecting the best configuration

Allowing pyglet to select the best configuration based on a template is sufficient for most applications,
however some complex programs may want to specify their own algorithm for selecting a set of OpenGL
attributes.

Y ou can enumerate ascreen’'s configs using the get_matching_configs method. Y ou must supply atemplate
as a minimum specification, but you can supply an "empty" template (one with no attributes set) to get a
list of all configurations supported by the screen.

In the following example, all configurations with either an auxilliary buffer or an accumulation buffer are
printed:

pl at form = pygl et. wi ndow. get _pl at f ornm()
di splay = platform get_default_display()
screen = di splay.get_default_screen()

for config in screen.get_natching_configs(gl.Config()):
if config.aux_buffers or config.accumred_size:
print config

As well as supporting more complex configuration selection algorithms, enumeration allows you to
efficiently find the maximum value of an attribute (for example, the maximum samples per pixel), or
present alist of possible configurations to the user.

11

Creating an OpenGL context

Sharing objects between contexts

Every window in pyglet has its own OpenGL context. Each context has its own OpenGL state, including
the matrix stacks and current flags. However, contexts can optionally share their objects with one or more
other contexts. Shareable objects include:

* Textures

Display lists
 Shader programs

Vertex and pixel buffer objects
» Framebuffer objects

There are two reasons for sharing objects. Thefirst isto alow objects to be stored on the video card only
once, even if used by more than one window. For example, you could have one window showing the
actual game, with other "debug" windows showing the various objects as they are manipulated. Or, a set
of widget textures required for a GUI could be shared between all the windows in an application.

The second reason is to avoid having to recreate the objects when a context needs to be recreated. For
example, if the user wishes to turn on multisampling, it is necessary to recreate the context. Rather than
destroy the old one and lose all the objects aready created, you can

1. Create the new context, sharing object space with the old context, then
2. Destroy the old context. The new context retains al the old objects.

pyglet defines an ObjectSpace: a representation of a collection of objects used by one or more contexts.
Each context has a single object space, accessible viaits object_space attribute.

By default, all contexts share the same object space aslong as at |east one context using it is"alive". If all
the contexts sharing an object space are lost or destroyed, the object space will be destroyed also. Thisis
why it is necessary to follow the steps outlined above for retaining objects when a context is recreated.

pyglet creates a hidden "shadow" context as soon as pyglet.gl is imported. By default, all windows will
share object space with this shadow context, so the above steps are generally not needed. The shadow
context also allows objects such as textures to be loaded before awindow is created.

When you create a Context, you tell pyglet which other context it will obtain an object space from. By
default (when using the Window constructor to create the context) the most recently created context will be
used. Y ou can specify another context, or specify no context (to create a new object space) in the Context
constructor.

It can be useful to keep track of which object space an object was created in. For example, when you load
afont, pyglet caches the textures used and reuses them; but only if the font is being loaded on the same
object space. The easiest way to do thisisto set your own attributes on the ObjectSpace object.

In the following example, an attribute is set on the object space indicating that game objects have been
loaded. This way, if the context is recreated, you can check for this attribute to determine if you need to
load them again:

context = pyglet.gl.get_current_context()
obj ect _space = context.object_space
obj ect _space. my_game_obj ects_| oaded = True

12

Creating an OpenGL context

Avoid using attribute names on ObjectSpacethat beginwith" pygl et ", they may conflict with aninternal
module.

13

The OpenGL interface

pyglet provides an interface to OpenGL and GLU. The interface is used by all of pyglet's higher-level
API's, so that all rendering is done efficiently by the graphics card, rather than the operating system. Y ou
can access thisinterface directly; using it is much like using OpenGL from C.

The interface is a "thin-wrapper" around | i bG.. so on Linux, opengl 32. dl | on Windows and
Open@.. framewor k on OS X. The pyglet maintainers regenerate the interface from the latest
specifications, so it is aways up-to-date with the latest version and almost all extensions.

The interface is provided by the pygl et . gl package. To use it you will need a good knowledge of
OpenGL, C and ctypes. You may prefer to use OpenGL without using ctypes, in which case you should
investigate PyOpenGL [http://pyopengl.sourceforge.net/]. PyOpenGL [http://pyopengl.sourceforge.net/]
provides similar functionality with a more "Pythonic" interface, and will work with pyglet without any
modification.

Using OpenGL

Documentation of OpenGL and GLU are provided at the OpenGL website [http://www.opengl.org] and
(more comprehensively) in the OpenGL Programming Guide [http://opengl.org/documentation/red_book/

].

Importing the package gives access to OpenGL, GLU, and all OpenGL registered extensions. This is
sufficient for all but the most advanced uses of OpenGL.:

frompyglet.gl inport *

All function names and constants are identical to the C counterparts. For example, the following program
draws atriangle on the screen:

frompyglet.gl inport *

Direct OpenG commands to this w ndow.
wi ndow = pygl et.w ndow. W ndow()

@ ndow. event
def on_draw():
gl d ear (G._COLOR_BUFFER_BI T)
gl Loadl dentity()
gl Begi n(GL_TRI ANGLES)
gl Vertex2f (0, 0)
gl Vertex2f (wi ndow. wi dt h, 0)
gl Vertex2f (wi ndow. wi dt h, w ndow. hei ght)
gl End()

pygl et. app. run()

Some OpenGL functions require an array of data. These arrays must be constructed asct ypes arrays of
the correct type. The following example draw the sametriangle as above, but uses avertex array instead of
theimmediate-mode functions. Note the construction of the vertex array using aone-dimensional ct ypes
array of GLf | oat :

frompyglet.gl inport *

wi ndow = pygl et.w ndow. W ndow()

14

http://pyopengl.sourceforge.net/
http://pyopengl.sourceforge.net/
http://pyopengl.sourceforge.net/
http://pyopengl.sourceforge.net/
http://www.opengl.org
http://www.opengl.org
http://opengl.org/documentation/red_book/
http://opengl.org/documentation/red_book/

The OpenGL interface

vertices = [
0, O,
wi ndow. wi dt h, O,
wi ndow. wi dt h, w ndow. hei ght]
vertices_gl = (G.float * len(vertices))(*vertices)

gl Enabl ed i ent St at e(G._VERTEX_ARRAY)
gl VertexPointer (2, GL_FLOAT, 0, vertices_gl)

@ ndow. event
def on_draw():
gl O ear (GL_COLOR _BUFFER BI T)
gl Loadl dentity()
gl DrawArrays(GL_TRI ANGLES, 0, len(vertices) // 2)

pygl et. app. run()

Similar array constructions can be used to create datafor vertex buffer objects, texture data, polygon stipple
data and the map functions.

Resizing the window

pyglet sets up the viewport and an orthographic projection on each window automatically. It does thisin
adefault on_resize handler defined on Window:

@ ndow. event
def on_resize(w dth, height):
gl Viewport (0, 0, width, height)
gl Mat ri xMode(gl . GL_PRQIECTI ON)
gl Loadl dentity()
gl Otho(0, width, 0, height, -1, 1)
gl Matri xMode(gl . GL_MODELVI EW

If you need to define your own projection (for example, to use a 3-dimensional perspective projection),
you should override this event with your own; for example:

@ ndow. event
def on_resize(w dth, height):
gl Viewport (0, 0, width, height)
gl Matri xMode(GL_PRQIECTI ON)
gl Loadl dentity()
gl uPer spective(65, width / float(height), .1, 1000)
gl Mat ri xMode(GL_MODELVI EW
return pygl et.event. EVENT_HANDLED

Note that the on_resize handler is called for a window the first time it is displayed, as well as any time
it islater resized.

Error checking

By default, pyglet calls gl Get Err or after every GL function call (except where such a check would
be invalid). If an error is reported, pyglet raises GLExcept i on with the result of gl uError Stri ng
as the message.

15

The OpenGL interface

Thisis very handy during development, as it catches common coding errors early on. However, it has a
significant impact on performance, and is disabled when python is run with the - Ooption.

You can also disable this error check by setting the following option before importing pygl et . gl or
pygl et. wi ndow:

Disable error checking for increased performance
pygl et . options[' debug_gl'] = Fal se

frompyglet.gl inport *

Setting the option after importing pygl et . gl will have no effect. Once disabled, there is no error-
checking overhead in each GL call.

Using extension functions

Before using an extension function, you should check that the extension is implemented by the current
driver. Typicaly thisisdone using gl Get St ri ng(GL_EXTENSI ONS) , but pyglet has a convenience
module, pyglet.gl.gl_info that does this for you:

if pyglet.gl.gl_info.have extension('G._ARB shadow):
... do shadowrel ated code.

el se:
... raise an exception, or use a fallback nethod

Y ou can also easily check the version of OpenGL:

if pyglet.gl.gl_info.have version(1l,5):
We can assune all OpenG. 1.5 functions are inpl enented.

Remember to only call thegl _i nf o functions after creating a window.

Thereisacorresponding gl u_i nf o module for checking the version and extensions of GLU.

nVidia often release hardware with extensions before having them registered officially. When you
import * from pygl et. gl youimport only the registered extensions. Y ou can import the latest

nVidia extensions with:

from pyglet.gl.glext_nv inport *

Using multiple windows

pyglet alowsyou to create and display any number of windows simultaneously. Each will be created with
its own OpenGL context, however al contexts will share the same texture objects, display lists, shader
programs, and so on, by default 7. Each context has its own state and framebuffers.

There is aways an active context (unless there are no windows). When using pyglet.app.run for the
application event loop, pyglet ensures that the correct window is the active context before dispatching the
on_draw or on_resize events.

In other cases, you can explicitly set the active context with Window.switch_to.

’Sometimes objects and lists cannot be shared between contexts; for example, when the contexts are provided by different video devices. Thiswill
usually only occur if you explicitly select different screens driven by different devices.

16

The OpenGL interface

AGL, GLX and WGL

The OpenGL context itself is managed by an operating-system specific library: AGL on OS X, GLX under
X11 and WGL on Windows. pyglet handles these details when awindow is created, but you may need to
use the functions directly (for example, to use pbuffers) or an extension function.

Themodules are named pygl et . gl . agl , pygl et. gl . gl x andpygl et. gl . wgl . You must only
import the correct module for the running operating system:

if sys.platform=="1inux2":
frompyglet.gl.glx inmport *
gl xCreat ePbuffer(...)

elif sys.platform=="darwin':
frompyglet.gl.agl inport *
agl Creat ePbuffer(...)

There are convenience modules for querying the version and extensions of WGL and GLX named
pygl et. gl .wgl _i nfo and pygl et. gl . gl x_i nf o, respectively. AGL does not have such a
module, just query the version of OS X instead.

If using GLX extensions, you can import pygl et . gl . gl xext _ar b for the registered extensions or
pygl et. gl . gl xext _nv for thelatest nVidia extensions.

Similarly, if using WGL extensions,importpygl et . gl . wgl ext _arborpygl et. gl . wgl ext _nv.

17

Graphics

At the lowest level, pyglet uses OpenGL to draw in windows. The OpenGL interface is exposed via the
pyglet.gl module (see The OpenGL interface).

However, using the OpenGL interface directly for drawing graphics is difficult and inefficient. The
pyglet.graphics module provides a simpler means for drawing graphics that uses vertex arrays and vertex
buffer objects internally to deliver better performance.

Drawing primitives
The pyglet.graphics module draws the OpenGL primitive objects by a mode denoted by the constants
* pyglet.gl.G_PONTS
« pyglet.gl.G_LINES
* pyglet.gl.G _LINE LOOP
* pyglet.gl.E@_LINE STRIP
* pyglet.gl.d_TRI ANGLES
* pyglet.gl.@_TRI ANGLE_STRI P
* pyglet.gl.G_TRI ANGLE_FAN
* pyglet.gl.d_QUADS
e pyglet.gl.d_QUAD STRI P
* pyglet.gl.G_POLYGON

See the OpenGL Programming Guide [http://opengl.org/documentation/red_book/] for a description of
each of mode.

Each primitiveis made up of one or more vertices. Each vertex is specified with either 2, 3 or 4 components
(for 2D, 3D, or non-homogeneous coordinates). The datatype of each component can be either int or float.

Use pyglet.graphics.draw to draw a primitive. The following example draws two points at coordinates
(10, 15) and (30, 35):

pygl et. graphi cs. draw(2, pyglet.gl.G _PO NTS,
("v2i', (10, 15, 30, 35))
)
Thefirst and second argumentsto the function give the number of verticesto draw and the primitive mode,

respectively. Thethird argument is a"dataitem", and gives the actual vertex data.

Because vertex data can be supplied in several forms, a"format string” is required. In this case, the format
stringis” v2i ", meaning the vertex position data has two components (2D) and int type.

The following example has the same effect as the previous one, but uses floating point data and 3
components per vertex:

18

http://opengl.org/documentation/red_book/
http://opengl.org/documentation/red_book/

Graphics

pygl et. graphi cs. drawm 2, pyglet.gl.G _PO NTS,
("v3f', (10.0, 15.0, 0.0, 30.0, 35.0, 0.0))

)

Vertices can also be drawn out of order and more than once by using the pyglet.graphics.draw_indexed
function. This requires alist of integers giving the indices into the vertex data. The following example
draws the same two points as above, but indexes the vertices (sequentialy):

pygl et . graphi cs. draw_i ndexed(2, pyglet.gl.G _PO NTS,
[Oy 11 21 3]1
("v2i', (10, 15, 30, 35))

)

This second exampleis more typical; two adjacent triangles are drawn, and the shared vertices are reused
with indexing:

pygl et. graphi cs. draw_i ndexed(4, pyglet.gl.G_TR ANGLES,
[0, 1, 2, O, 2, 3],
("v2i', (100, 100,
150, 100,
150, 150,
100, 150))

)

Note that the first argument gives the number of vertices in the data, not the number of indices (which is
implicit on the length of the index list given in the third argument).

Vertex attributes

Besides the required vertex position, vertices can have several other numeric attributes. Each is specified
in the format string with a letter, the number of components and the data type.

Each of the attributesis described in the table bel ow with the set of valid format stringswritten asaregular
expression (for example, " v[234] [i f]" means"v2f","v3i","v4f" etc. aredl valid formats).

Some attributes have a"recommended” format string, which isthe most efficient form for the video driver
asit requires less conversion.

Attribute Formats Recommended

Vertex position "v[234] "v[234]f"
[sifd]"

Color "c[34] "c[34] B"
[bBsSilfd]"

Edgeflag "el[bB]"

Fog coordinate "f[1234]
[bBsSilfd]"

Normal "n3[bsifd]" "n3f"

Secondary color "s[34] "s[34] B"
[bBsSilfd]"

Texture coordinate "t[234] "t[234]f"
[sifd]"

19

Graphics

Attribute Formats Recommended
Generic attribute "[0-15]g(n)?

[1234]

[bBsSi | fd]"

The possible data types that can be specified in the format string are described below.
Format Type Python type
"b" Signed byte int
"B Unsigned byte int
"s" Signed short int
" s Unsigned short int
i Signed int int
" Unsigned int int
" Single precision|float

float
"d" Double precision|float
float

The following attributes are normalised to therange [0, 1] . Thevaueisused as-isif the datatypeis
floating-point. If the datatypeisbyte, short or int, the valueisdivided by the maximum value representable
by that type. For example, unsigned bytes are divided by 255 to get the normalised value.

» Color
 Secondary color
» Generic attributes with the" n" format given.

Up to 16 generic attributes can be specified per vertex, and can be used by shader programsfor any purpose
(they areignored inthefixed-function pipeline). For the other attributes, consult the OpenGL programming
guide for details on their effects.

When using the pyglet.graphics.draw and related functions, attribute datais specified alongside the vertex
position data. The following example reproduces the two points from the previous page, except that the
first point is blue and the second green:

pygl et. graphi cs. draw(2, pyglet.gl.G _PO NTS,
("v2i', (10, 15, 30, 35)),
("c3B, (0, 0, 255, 0, 255, 0))

)

It is an error to provide more than one set of data for any attribute, or to mismatch the size of the initial
data with the number of vertices specified in the first argument.

Vertex lists

There is a significant overhead in using pyglet.graphics.draw and pyglet.graphics.draw_indexed due to
pyglet interpreting and formatting the vertex data for the video device. Usually the data drawn in each
frame (of an animation) isidentical or very similar to the previous frame, so this overhead is unnecessarily
repeated.

20

Graphics

A VertexList isalist of vertices and their attributes, stored in an efficient manner that's suitable for direct
upload to the video card. On newer video cards (supporting OpenGL 1.5 or later) the datais actually stored
in video memory.

Create a VertexList for a set of attributes and initial data with pyglet.graphics.vertex_list. The following
example creates a vertex list with the two coloured points used in the previous page:

vertex list = pyglet.graphics.vertex |ist(2,
("v2i', (10, 15, 30, 35)),
("c3B, (0, 0, 255, 0, 255, 0))

)

To draw the vertex list, call its VertexList.draw method:
vertex_ list.drawpyglet.gl.G _ PO NTS)

Note that the primitive mode is given to the draw method, not the vertex list constructor. Otherwise the
vertex_list method takes the same arguments as pyglet.graphics.draw, including any number of vertex
attributes.

Because vertex lists can reside in video memory, it is necessary to call the delete method to release video

resources if the vertex list isn't going to be used any more (there's no need to do thisif you're just exiting
the process).

Updating vertex data

The datain avertex list can be modified. Each vertex attribute (including the vertex position) appears as
an attribute on the VertexList object. The attribute names are given in the following table.

Vertex attribute Object attribute
Vertex position vertices

Color colors

Edgeflag edge _fl ags

Fog coordinate fog_coords

Normal nor mal s

Secondary color secondary_col ors
Texture coordinate tex_coords

Generic attribute Inaccessible

In the following example, the vertex positions of the vertex list are updated by replacing theverti ces
attribute:

vertex list.vertices = [20, 25, 40, 45]
The attributes can also be selectively updated in-place:
vertex_ list.vertices[:2] = [30, 35]
Similarly, the color attribute of the vertex can be updated:

vertex_list.colors[:3] = [255 0, 0]

21

Graphics

For large vertex lists, updating only the modified vertices can have a perfomance benefit, especialy on
newer graphics cards.

Attempting to set the attribute list to a different size will cause an error (not necessarily immediately,
either). To resize the vertex list, call VertexList.resize with the new vertex count. Be sure to fill in any
newly uninitialised data after resizing the vertex list.

Since vertex lists are mutable, you may not necessarily want to initialise them with any particular data.
You can specify just the format string in place of the (f or mat, dat a) tuple in the data arguments
vertex_list function. The following example creates a vertex list of 1024 vertices with positional, color,
texture coordinate and normal attributes:

vertex_list = pyglet.graphics.vertex_list(1024, 'v3f', 'c4B, 't2f', "'n3f")
Data usage
By default, pyglet assumes vertex datawill be updated |ess often than it is drawn, but more often than just

during initialisation. Y ou can override this assumption for each attribute by affixing a usage specification
onto the end of the format string, detailed in the following table:

Usage Description

"/static" Data is never or rarely
modified after initialisation

"/dynam c" Data is occasiondly
modified (default)

"/ streant Dataisupdated every frame

In the following example a vertex list is created in which the positional data is expected to change every
frame, but the color data is expected to remain relatively constant:

vertex_list = pyglet.graphics.vertex_|ist(1024, 'v3f/stream, 'c4B/static')

The usage specification affects how pyglet lays out vertex datain memory, whether or not it's stored on
the video card, and is used as a hint to OpenGL. Specifying a usage does not affect what operations are
possible with a vertex list (ast ati ¢ attribute can still be modified), and may only have performance
benefits on some hardware.

Indexed vertex lists

IndexedVertexList performs the same role as VertexList, but for indexed vertices. Use
pyglet.graphics.vertex list indexed to construct an indexed vertex list, and update the
IndexedVertexList.indices sequence to change the indices.

Batched rendering

For optimal OpenGL performance, you should render as many vertex lists as possible in asingle dr aw
cal. Internaly, pyglet uses VertexDomain and IndexedVertexDomain to keep vertex lists that share the
same attribute formats in adjacent areas of memory. The entire domain of vertex lists can then be drawn
at once, without calling VertexList.draw on each individual list.

It is quite difficult and tedious to write an application that manages vertex domains itself, though. In
addition to maintaining a vertex domain for each set of attribute formats, domains must also be separated
by primitive mode and required OpenGL state.

22

Graphics

The Batch class implements this functionality, grouping related vertex lists together and sorting by
OpenGL state automatically. A batch is created with no arguments:

batch = pygl et. graphi cs. Bat ch()

Vertex lists can now be created with the Batch.add and Batch.add indexed methods instead
of pyglet.graphics.vertex list and pyglet.graphics.vertex_list_indexed functions. Unlike the module
functions, these methodsaccept anmode parameter (the primitive mode) andagr oup parameter (described
below).

The two coloured points from previous pages can be added to a batch as a single vertex list with:

vertex list = batch.add(2, pyglet.gl.G _ PO NTS, None,
("v2i', (10, 15, 30, 35)),
("c3B, (0, 0, 255, 0, 255, 0))

)

Theresulting vertex_list can be modified as described in the previous section. However, instead of calling
VertexList.draw to draw it, call Batch.draw to draw all vertex lists contained in the batch at once:

bat ch. draw()

For batches containing many vertex lists this gives a significant performance improvement over drawing
individual vertex lists.

To remove avertex list from abatch, call VertexList.delete.

Setting the OpenGL state

In order to achieve many effectsin OpenGL one or more global state parameters must be set. For example,
to enable and bind atexture requires:

frompyglet.gl inport *
gl Enabl e(texture. target)
gl Bi ndTexture(texture.target, texture.id)

before drawing vertex lists, and then:
gl Di sabl e(texture.target)
afterwards to avoid interfering with later drawing commands.

With a Group these state changes can be encapsulated and associated with the vertex lists they affect.
Subclass Group and override the Group.set_state and Group.unset_state methods to perform the required
state changes:

cl ass CustomG oup(pygl et. graphics. Goup):
def set _state(self):
gl Enabl e(texture. target)
gl BindTexture(texture.target, texture.id)

def unset_state(self):
gl Di sabl e(texture.target)

An instance of this group can now be attached to vertex lists in the batch:

custom group = Cust ontoup()

23

Graphics

vertex_list = batch.add(2, pyglet.gl.3_PO NTS, custom group,
(*v2i', (10, 15, 30, 35)),
(*c3B, (0, 0, 255, 0, 255, 0))

)

The Batch ensures that the appropriate set _st at e and unset _st at e methods are called before and
after the vertex lists that use them.

Hierarchical state

Groups have a parent attribute that allows them to be implicitly organised in a tree structure. If groups
B and C have parent A, then the order of set _st at e and unset _st at e calls for vertex listsin a
batch will be:

.set_state()
Draw A vertices
.set_state()
Draw B vertices
unset _state()
.set_state()
Draw C vertices
.unset _state()
.unset _state()

SOHODHDH >

This is useful to group state changes into as few calls as possible. For example, if you have a number
of vertex lists that all need texturing enabled, but have different bound textures, you could enable and
disable texturing in the parent group and bind each texture in the child groups. The following example
demonstrates this:

cl ass TextureEnabl eG oup(pygl et. graphi cs. G oup):
def set_state(self):
gl Enabl e(GL_TEXTURE_2D)

def unset_state(self):
gl D sabl e(G_._TEXTURE_2D)

texture_enabl e_group = Text ureEnabl eG oup()

cl ass TextureBi ndG oup(pygl et. graphi cs. G oup):
def __init_ (self, texture):
super (Text ureBi ndG oup, self).__init__(parent=texture_enabl e_group)
assert texture.target = G_TEXTURE 2D
self.texture = texture

def set_state(self):
gl Bi ndText ure(GL_TEXTURE 2D, self.texture.id)

No unset_state met hod required.
def __eq_ (self, other):
return (self._class__ is other._ class__ and

self.texture == other.__class_)

bat ch. add(4, G._QUADS, TextureBi ndG oup(texturel), 'v2f', "t2f")

24

Graphics

bat ch. add(4, G._QUADS, TextureBi ndG oup(texture2), 'v2f', "t2f")
bat ch. add(4, G._QUADS, TextureBi ndG oup(texturel), 'v2f', "t2f")

Notetheuseof an___eq__ method on the group to allow Batch to merge thetwo Text ur eBi ndGr oup
identical instances.

Sorting vertex lists

VertexDomain does not attempt to keep vertex listsin any particular order. So, any vertex lists sharing the
same primitive mode, attribute formats and group will be drawn in an arbitrary order. However, Batch will
sort Group objects sharing the same parent by their __cnp__ method. This allows groups to be ordered.

The OrderedGroup class is a convenience group that does not set any OpenGL state, but is parameterised
by an integer giving its draw order. In the following example a number of vertex lists are grouped into a
"background" group that is drawn before the vertex listsin the "foreground” group:

backgr ound
f or eground

= pygl et. graphi cs. Order edG oup(0)

= pygl et. graphi cs. OrderedG oup(1)
batch. add(4, G._QUADS, foreground, 'v2f')

bat ch. add(4, G._QUADS, background, 'v2f')

batch. add(4, G._QUADS, foreground, 'v2f')

batch. add(4, G._QUADS, background, 'v2f', 'c4B')

By combining hierarchical groups with ordered groups it is possible to describe an entire scene within a
single Batch, which then renders it as efficiently as possible.

Batches and groups in other modules

The Sorite, Label and TextLayout classes al accept bat ch and gr oup parametersin their constructors.
This allows you to add any of these higher-level pyglet drawables into arbitrary placesin your rendering
code.

For example, multiple sprites can be grouped into a single batch and then drawn at once, instead of calling
Sprite.draw on each one individually:

batch = pygl et. graphics. Bat ch()
sprites = [pyglet.sprite.Sprite(inmge, batch=batch) for i in range(100)]

bat ch. draw()

The gr oup parameter can be used to set the drawing order (and hence which objects overlap others)
within asingle batch, as described on the previous page.

In general you should batch all drawing objects into as few batches as possible, and use groups to manage
the draw order and other OpenGL state changes for optimal performance. If you are creating your own
drawable classes, consider adding bat ch and gr oup parametersin asimilar way.

25

Windowing

A Window in pyglet corresponds to a top-level window provided by the operating system. Windows can
be floating (overlapped with other application windows) or fullscreen.

Creating a window

If the Window constructor is called with no arguments, defaults will be assumed for all parameters:

wi ndow = pygl et.w ndow. W ndow()

The default parameters used are;

» Thewindow will have a size of 640x480, and not be resizable.

A default context will be created using template config described in OpenGL configuration options.
» Thewindow caption will be the name of the executing Python script (i.e., sys. ar gv[0]).

Windows are visible as soon as they are created, unless you give thevi si bl e=Fal se argument to the
constructor. The following example shows how to create and display awindow in two steps:

wi ndow = pygl et.w ndow. W ndow(vi si bl e=Fal se)

... performsone additional initialisation
wi ndow. set _vi si bl e()

Context configuration

The context of a window cannot be changed once created. There are several ways to control the context
that is created:

» Supply an aready-created Context using the cont ext argument:

context = config.create_context(share)
wi ndow = pygl et . wi ndow. W ndow(cont ext =cont ext)

» Supply a complete Config obtained from a Screen using the conf i g argument. The context will be
created from this config and will share object space with the most recently created existing context:

config
wi ndow

= screen. get _best _config(tenplate)

= pygl et . wi ndow. W ndow confi g=confi g)

» Supply atemplate Config using the conf i g argument. The context will use the best config obtained
from the default screen of the default display:

config
wi ndow

gl . Confi g(doubl e_buf f er =Tr ue)
pygl et. wi ndow. W ndow(confi g=confi g)

» Specify a Screen using the scr een argument. The context will use a config created from default
template configuration and this screen:

screen
w ndow

di spl ay. get _screens()[screen_nunber]
pygl et . wi ndow. W ndow(scr een=scr een)

26

Windowing

» Specify a Display using the di spl ay argument. The default screen on this display will be used to
obtain a context using the default template configuration:

di splay = platform get _displ ay(di spl ay_nane)
wi ndow = pygl et. w ndow. W ndow di spl ay=di spl ay)

If atemplate Config is given, a Screen or Display may aso be specified; however any other combination
of parameters overconstrains the configuration and some parameters will be ignored.

Fullscreen windows

Size

If the f ul | scr een=Tr ue argument is given to the window constructor, the window will draw to an
entire screen rather than a floating window. No window border or controls will be shown, so you must
ensure you provide some other means to exit the application.

By default, the default screen on the default display will be used, however you can optionally specify
another screen to use instead. For example, the following code creates a fullscreen window on the
secondary screen:

screens = display.get_screens()
wi ndow = pygl et.w ndow. Wndow(full screen=True, screens[1])

There is no way to create a fullscreen window that spans more than one window (for example, if you
wanted to create an immersive 3D environment across multiple monitors). Instead, you should create a
separate fullscreen window for each screen and attach identical event handlers to all windows.

Windows can be toggled in and out of fullscreen mode with the set_fullscreen method. For example, to
return to windowed mode from fullscreen:

wi ndow. set _ful | screen(Fal se)

The previous window size and location, if any, will attempt to be restored, however the operating system
does not always permit this, and the window may have rel ocated.

and position

This section applies only to windows that are not fullscreen. Fullscreen windows aways have the width
and height of the screen they fill.

Y ou can specify the size of awindow asthefirst two argumentsto the window constructor. Inthefollowing
example, awindow is created with awidth of 800 pixels and a height of 600 pixels:

wi ndow = pygl et.w ndow. W ndow(800, 600)

The "size" of awindow refers to the drawable space within it, excluding any additional borders or title
bar drawn by the operating system.

You can allow the user to resize your window by specifying r esi zabl e=Tr ue in the constructor. If
you do this, you may also want to handle the on_resize event:

wi ndow = pygl et. wi ndow. W ndow(r esi zabl e=Tr ue)

@ ndow. event
def on_resize(w dth, height):
print ' The wi ndow was resized to %dx%' % (wi dth, height)

27

Windowing

Y ou can specify a minimum and maximum size that the window can be resized to by the user with the
set_minimum _size and set_maximum_size methods:

wi ndow. set _ni ni mum si ze(320, 200)
Wi ndow. set _naxi mum si ze(1024, 768)

Thewindow can a so beresized programatically (evenif thewindow isnot user-resizable) withtheset_size
method:

wi ndow. set _si ze(800, 600)

The window will initially be positioned by the operating system. Typically, it will use its own algorithm
to locate the window in aplace that does not block other application windows, or cascades with them. You
can manually adjust the position of the window using the get_position and set_position methods:

X, Yy = w ndow. get | ocation()
wi ndow. set | ocation(x + 20, y + 20)

Note that unlike the usual coordinate system in pyglet, thewindow location isrelative to the top-1eft corner
of the desktop, as shown in the following diagram:

height

<>
width

C ——

The position and size of the window relative to the desktop.

Appearance
Window style

Non-fullscreen windows can be created in one of four styles: default, dialog, tool or borderless. Examples
of the appearances of each of these styles under Windows XP and Mac OS X 10.4 are shown below.

Style Windows XP Mac OS X
WIND OW_SI—YL E_D EFAULT © © O WINDOW_STYLE DEFAULT
VVI NDOW_STYL E_D I AL OG © O © WINDOW_STYLE_DIALOG

© 00 WNDOW.STYLETOOL

WINDOW_STYLE_TOOL

Non-resizable variants of these window styles may appear dightly different (for example, the maximize
button will either be disabled or absent).

28

Windowing

Besides the change in appearance, the window styles affect how the window behaves. For example, tool
windows do not usually appear in the task bar and cannot receive keyboard focus. Dial og windows cannot
be minimized. Selecting the appropriate window style for your windows means your application will
behave correctly for the platform on which it is running, however that behaviour may not be consistent
across Windows, Linux and Mac OS X.

The appearance and behaviour of windows in Linux will vary greatly depending on the distribution,
window manager and user preferences.

Borderlesswindows (WINDOW_STYLE BORDERLESS) are not decorated by the operating system at all,
and have no way to be resized or moved around the desktop. These are useful for implementing splash
screens or custom window borders.

Y ou can specify the style of the window in the Window constructor. Once created, the window style cannot
be altered:

wi ndow = pygl et. wi ndow. W ndow(styl e=wi ndow. W ndow. W NDOW STYLE_DI ALOG)

Caption

Ilcon

The window's caption appears in its title bar and task bar icon (on Windows and some Linux window
managers). You can set the caption during window cregtion or at any later time using the set_caption
method:

wi ndow = pygl et.w ndow. Wndow(caption="Initial caption')
wi ndow. set _caption(' A different caption')

The window icon appears in the title bar and task bar icon on Windows and Linux, and in the dock icon
on Mac OS X. Dialog and tool windows do not necessarily show their icon.

Windows, Mac OS X and the Linux window managers each have their own preferred icon sizes:
W ndows XP ¢ A 16x16icon for thetitle bar and task bar.
* A 32x32icon for the Alt+Tab switcher.

Mac OS X e Any number of icons of resolutions 16x16, 24x24, 32x32,
48x48, 72x72 and 128x128. The actual image displayed will be
interpolated to the correct size from those provided.

Li nux < No constraints, however most window managers will use a 16x16
and a32x32 icon in the same way as Windows XP.

The Window.set_icon method allows you to set any number of images as the icon. pyglet will select the
most appropriate onesto use and apply them to thewindow. If an alternate sizeisrequired but not provided,
pydlet will scale the image to the correct size using a simple interpolation algorithm.

The following example provides both a 16x16 and a 32x32 image as the window icon:

wi ndow = pygl et.w ndow. W ndow()

i conl pygl et . i mage. | oad(' 16x16. png')
i con2 pygl et. i mage. | oad(' 32x32. png')
wi ndow. set _i con(iconl, icon2)

29

Windowing

You can use images in any format supported by pyglet, however it is recommended to use a format that
supports apha transparency such as PNG. Windows .ico files are supported only on Windows, so their
use is discouraged. Mac OS X .iconsfiles are not supported at all.

Note that the icon that you set at runtime need not have anything to do with the application icon, which
must be encoded specially in the application binary (see Self-contained executables).

Visibility

Windows have several states of visibility. Already shown is the visible property which shows or hides
the window.

Windows can be minimized, which is equivalent to hiding them except that they still appear on the taskbar
(or are minimised to the dock, on OS X). The user can minimize a window by clicking the appropriate
button in the title bar. You can also programmatically minimize a window using the minimize method
(thereis also a corresponding maximize method).

When awindow is made visible the on_show event is triggered. When it is hidden the on_hide event is
triggered. On Windows and Linux these events will only occur when you manually change the visibility
of the window or when the window is minimized or restored. On Mac OS X the user can also hide or show
the window (affecting visibility) using the Command+H shortcut.

Subclassing Window

A useful patternin pyglet isto subclass Window for each type of window you will display, or asyour main
application class. There are several benefits:

* You can load font and other resources from the constructor, ensuring the OpenGL context has already
been created.

* You can add event handlers simply be defining them on the class. The on_resize event will be called
as soon as the window is created (this doesn't usually happen, as you must create the window before
you can attach event handlers).

» Thereisreduced need for global variables, as you can maintain application state on the window.

The following example shows the same "Hello World" application as presented in Writing a pyglet
application, using a subclass of Window:

cl ass Hel | owor | dW ndow(pygl et . wi ndow. W ndow) :
def __init__ (self):
super (Hel | oWor I dW ndow, self). _init_ ()

sel f.label = pyglet.text.Label ('Hello, world!")

def on_draw(sel f):
sel f.clear()
sel f. | abel .draw)

if nane_ =="'_main__":
wi ndow = Hel | oWor | dW ndow()

pygl et. app. run()

This example program is located in examples/programming_guide/window_subclass.py.

30

Windowing

Windows and OpenGL contexts

Every window in pyglet has an associated OpenGL context. Specifying the configuration of this context
has already been covered in Creating a window. Drawing into the OpenGL context is the only way to
draw into the window's client area.

Double-buffering

If thewindow isdouble-buffered (i.e., the configuration specified doubl e _buf f er =Tr ue, the default),
OpenGL commands are applied to a hidden back buffer. This back buffer can be copied to the window
using the flip method. If you are using the standard pyglet.app.run or pyglet.app.EventLoop event loop,
thisistaken care of automatically after each on_draw event.

If the window is not double-buffered, the flip operation is unnecessary, and you should remember only to
call glFlush to ensure buffered commands are executed.

Vertical retrace synchronisation

Double-buffering eliminates one cause of flickering: the user is unable to see the image as it painted, only
the final rendering. However, it does introduce another source of flicker known as "tearing".

Tearing becomes apparent when displaying fast-moving objects in an animation. The buffer flip occurs
whilethevideo display isstill reading datafrom the framebuffer, causing thetop half of the display to show
the previous frame while the bottom half shows the updated frame. If you are updating the framebuffer
particularly quickly you may notice three or more such "tears" in the display.

pyglet providesaway to avoid tearing by synchronising buffer flipsto thevideo refresh rate. Thisisenabled
by default, but can be set or unset manually at any time with the vsync (vertical retrace synchronisation)
property. A window is created with vsync initially disabled in the following example:

wi ndow = pygl et.wi ndow. Wndow(vsync=Fal se)

It is usually desirable to leave vsync enabled, as it results in flicker-free animation. There are some use-
cases where you may want to disableit, for example:

* Profiling an application. Measuring the time taken to perform an operation will be affected by the time
spent waiting for the video device to refresh, which can throw off results. Y ou should disable vsync if
you are measuring the performance of your application.

« If you cannot afford for your application to block. If your application run loop needs to quickly poll a
hardware device, for example, you may want to avoid blocking with vsync.

Note that some older video cards do not support the required extensions to implement vsync; this will
appear as awarning on the console but is otherwise ignored.

31

The application event loop

In order to let pyglet process operating system events such as mouse and keyboard events, applications
need to enter an application event loop. The event loop continuously checks for new events, dispatches
those events, and updates the contents of all open windows.

pyglet provides an application event loop that is tuned for performance and low power usage on Windows,
Linux and Mac OS X. Most applications need only call:

pygl et. app. run()

to enter the event loop after creating their initial set of windows and attaching event handlers. The run
function does not return until all open windows have been closed, or until pygl et . app. exit() is
called.

The pyglet application event loop dispatches window events (such as for mouse and keyboard input) as
they occur and dispatches the on_draw event to each window after every iteration through the loop.

To have additional code run periodically or every iteration through the loop, schedule functions on the
clock (see Scheduling functions for future execution). pyglet ensures that the loop iterates only as often as
necessary to fulfil al scheduled functions and user input.

Customising the event loop

The pyglet event loop is encapsulated in the EventLoop class, which provides several hooks that can
be overridden for customising its behaviour. This is recommended only for advanced users -- typical
applications and games are unlikely to require this functionality.

To use the EventLoop class directly, instantiate it and call run:
pygl et. app. Event Loop() . run()
Only one EventLoop can be running at a time; when the run method is called the module variable

pyglet.app.event_loop is set to the running instance. Other pyglet modules such as pyglet.window depend
on this.

Event loop events

Y ou can listen for several events on the event loop instance. The most useful of theseison_window_close,
which is dispatched whenever awindow is closed. The default handler for this event exits the event loop
if there are no more windows. The following example overrides this behaviour to exit the application
whenever any window is closed:

event _| oop = pygl et. app. Event Loop()
@vent _| oop. event
def on_wi ndow_cl ose(w ndow) :

event _| oop. exit()

return pygl et.event. EVENT_HANDLED

event _| oop. run()

32

The application event loop

Overriding the default idle policy

TheEventLoop.idlemethod iscalled every iteration of theevent loop. It isresponsiblefor calling scheduled
clock functions, redrawing windows, and deciding how idle the application is. You can override this
method if you have specific requirements for tuning the performance of your application; especialy if it
uses many windows.

The default implementation has the following algorithm:

1. Cal clock.tick with pol | =Tr ue to call any scheduled functions.
2. Dispatch the on_draw event and call flip on every open window.
3. Return the value of clock.get_sleep time.

The return value of the method is the number of seconds until the event loop needsto iterate again (unless
there is an earlier user-input event); or None if the loop can wait for input indefinitely.

Notethat thisdefault policy causes every window to be redrawn during every user event -- if you have more
knowledge about which events have an effect on which windows you can improve on the performance
of this method.

Dispatching events manually

Earlier versions of pyglet and certain other windowing toolkits such as PyGame and SDL require
the application developer to write their own event loop. This "manual” event loop is usualy just an
inconvenience compared to pygl et.app.run, but can be necessary in some situationswhen combining pyglet
with other toolkits.

A simple event loop usualy has the following form:

whil e True:
pygl et . cl ock. tick()

for window in pyglet.app.w ndows:
wi ndow. swi tch_to()
wi ndow. di spat ch_event s()
wi ndow. di spatch_event (' on_draw)
wi ndow. flip()

The dispatch_events method checks the window's operating system event queue for user input and
dispatches any events found. The method does not wait for input -- if ther are no events pending, control
isreturned to the program immediately.

Thecall to pyglet.clock.tick() isrequired for ensuring scheduled functions are called, including the internal
data pump functions for playing sounds and video.

Developers are strongly discouraged from writing pyglet applications with event loops like this:

» The EventLoop class provides plenty of hooks for most toolkits to be integrated without needing to
resort to a manual event loop.

» Because EventLoop is tuned for specific operating systems, it is more responsive to user events, and
continues calling clock functions while windows are being resized, and (on Mac OS X) the menu bar
is being tracked.

33

The application event loop

* It is difficult to write a manual event loop that does not consume 100% CPU while still remaining
responsive to user input.

The capability for writing manual event loops remains for legacy support and extreme circumstances.

The pyglet event framework

The pyglet.window, pyglet.media, pyglet.app and pyglet.text modules make use of a consistent event
pattern, which provides several ways to attach event handlers to objects. Y ou can also reuse this pattern
inyour own classes easily.

Throughout this documentation, an "event dispatcher" is an object that has events it needs to notify other
objects about, and an "event handler” is some code that can be attached to a dispatcher.

Setting event handlers

An event handler is simply a function with a formal parameter list corresponding to the event type. For
example, the Window.on_resize event has the parameters (wi dt h, hei ght), so an event handler for
this event could be:

def on_resize(wi dth, height):
pass

The Window class subclasses EventDispatcher, which enablesit to have event handlers attached to it. The
simplest way to attach an event handler is to set the corresponding attribute on the object:

wi ndow = pygl et.w ndow. W ndow()

def on_resize(w dth, height):
pass
w ndow. on_resi ze = on_resize

While this technique is straight-forward, it requires you to write the name of the event three times for the
one function, which can get tiresome. pyglet provides a shortcut using the event decorator:

wi ndow = wi ndow. W ndow()

@ ndow. event
def on_resize(w dth, height):
pass

Thisisnot entirely equivalent to setting the event handler directly on the object. If the object already had an
event handler, using @vent will add the handler to the object, rather than replacing it. The next section
describes this functionality in detail.

As shown in Subclassing Window, you can also attach event handlers by subclassing the event dispatcher
and adding the event handler as a method:

cl ass MyW ndow pygl et . wi ndow. W ndow) :
def on_resize(self, width, height):
pass

Stacking event handlers

It is often convenient to attach more than one event handler for an event. EventDispatcher allows you to
stack event handlers upon one another, rather than replacing them outright. The event will propogate from
the top of the stack to the bottom, but can be stopped by any handler along the way.

35

The pyglet event framework

To push an event handler onto the stack, use the push_handlers method:

def on_key press(synbol, nodifiers):
i f synbol == key. SPACE
fire_laser()

wi ndow. push_handl ers(on_key_press)
As aconvenience, the @vent decorator can be used as an alternative to push_handlers:

@ ndow. event
def on_key press(synbol, nodifiers):
i f synbol == key. SPACE
fire_laser()

One use for pushing handlers instead of setting them is to handle different parameterisations of eventsin
different functions. In the above example, if the spacebar is pressed, the laser will be fired. After the event
handler returns control is passed to the next handler on the stack, which on a Window is a function that
checks for the ESC key and setsthe has_exi t attribute if it is pressed. By pushing the event handler
instead of setting it, the application keeps the default behaviour while adding additional functionality.

You can prevent the remaining event handlers in the stack from receiving the event by returning a true
value. The following event handler, when pushed onto the window, will prevent the escape key from
exiting the program:

def on_key press(synbol, nodifiers):
i f synbol == key.ESCAPE:
return True

wi ndow. push_handl ers(on_key_press)

Y ou can push more than one event handler at a time, which is especially useful when coupled with the
pop_handl er s function. Inthefollowing example, when the game starts some additional event handlers
are pushed onto the stack. When the game ends (perhaps returning to some menu screen) the handlers are
popped off in one go:

def start_gane():
def on_key press(synbol, nodifiers):
print 'Key pressed in gane'
return True

def on_npuse_press(x, y, button, nodifiers):
print ' Muse button pressed in gane'
return True

wi ndow. push_handl ers(on_key_press, on_nouse_press)

def end_game():
wi ndow. pop_handl er s()

Note that you do not specify which handlers to pop off the stack -- the entire top "level" (consisting of all
handlers specified in asingle call to push_handlers) is popped.

Y ou can apply the same pattern in an obj ect-oriented fashion by grouping related event handlersinasingle
class. In the following example, a GaneEvent Handl er classis defined. An instance of that class can
be pushed on and popped off of awindow:

36

The pyglet event framework

cl ass GanmeEvent Handl er (obj ect):
def on_key press(self, synbol, nodifiers):
print 'Key pressed in gane'
return True

def on_nopuse_press(self, x, y, button, nodifiers):
print ' Muse button pressed in gane'
return True

gane_handl ers = GanmeEvent Handl er ()

def start_gane()
wi ndow. push_handl er s(gane_handl er s)

def stop_gane()
wi ndow. pop_handl er s()

Creating your own event dispatcher

pyglet provides only the Window and Player event dispatchers, but exposes a public interface for creating
and dispatching your own events.

The steps for creating an event dispatcher are:

1. Subclass EventDispatcher

2. Call theregister_event_type class method on your subclass for each event your subclasswill recognise.
3. Call dispatch_event to create and dispatch an event as needed.

In the following example, a hypothetical GUI widget provides severa events:

cl ass C anki ngW dget (pygl et. event. Event Di spat cher):
def clank(self):
sel f. di spatch_event (' on_cl ank')

def click(self, clicks):
sel f.dispatch_event('on_clicked', clicks)

def on_cl ank(self):
print 'Default clank handler.'

G anki ngW dget . regi ster _event _type(' on_cl ank')
C anki ngW dget . regi ster _event _type('on_clicked")

Event handlers can then be attached as described in the preceding sections:
wi dget = C anki ngW dget ()

@\ dget . event
def on_clank():
pass

@\ dget . event
def on_clicked(clicks):

37

The pyglet event framework

pass

def override_on_clicked(clicks):
pass

wi dget . push_handl ers(on_cl i cked=override_on_clicked)

The EventDispatcher takes care of propogating the event to all attached handlers or ignoring it if there
are no handlersfor that event.

Thereis zero instance overhead on objects that have no event handlers attached (the event stack is created
only when required). This makes EventDispatcher suitable for use even on light-weight objects that may
not always have handlers. For example, Player is an EventDispatcher even though potentialy hundreds
of these objects may be created and destroyed each second, and most will not need an event handler.

Implementing the Observer pattern

The Observer design pattern [Gamma,etal.,” DesignPatterns Addison-Wesley1994], also known as
Publisher/Subscriber, is a simple way to decouple software components. It is used extensively in many
large software projects; for example, Java's AWT and Swing GUI toolkits and the Python | oggi ng
module; and is fundamental to any Model-View-Controller architecture.

EventDispatcher can be used to easily add observerable components to your application. The following
examplerecreatesthe ClockTimer examplefrom Design Patter ns(pages 300-301), though without needing
thebulky At t ach, Det ach and Not i f y methods:

The subj ect
cl ass O ockTi mer (pygl et. event . Event Di spat cher):
def tick(self):
sel f. di spatch_events(' on_update')
C ockTi ner.regi ster_event (' on_update')

Abstract observer class
cl ass Cbserver(object):
def __init__ (self, subject):
subj ect. push_handl ers(sel f)

Concrete observer
class Digital A ock(Cbserver):
def on_update(self):
pass

Concrete observer
cl ass Anal ogC ock(Qoserver):
def on_update(self):
pass

timer = d ockTimer()
digital _clock = Digital G ock(tinmner)
anal og_cl ock = Anal ogd ock(ti mer)

The two clock objects will be notified whenever the timer is "ticked", though neither the timer nor the
clocks needed prior knowledge of the other. During object construction any relationshi ps between subjects
and observers can be created.

38

Gamma,etal.,`DesignPatterns`Addison-Wesley1994
Gamma,etal.,`DesignPatterns`Addison-Wesley1994

The pyglet event framework

Documenting events

pyglet uses a modified version of Epydoc [http://epydoc.sourceforge.net/] to construct its API
documentation. One of these modificationsistheinclusion of an "Events' summary for event dispatchers.
If you plan on releasing your code as alibrary for others to use, you may want to consider using the same
tool to document code.

The patched version of Epydoc isincluded in the pyglet repository under t r unk/ t ool s/ epydoc (itis
not included in distributions). It has special notation for document event methods, and allows conditional
execution when introspecting source code.

If the sys. i s_epydoc attribute exists and is Tr ue, the module is currently being introspected for
documentation. pyglet places event documentation only within this conditional, to prevent extraneous
methods appearing on the class.

To document an event, create a method with the event's signature and add a blank event field to the
docstring:

i mport sys

cl ass MyDi spat cher (obj ect):
if getattr(sys, 'is_epydoc'):
def on_update():
""" The obj ect was updated.

sevent:

Note that the event parameters should not include sel f . The function will appear in the "Events" table
and not as a method.

39

http://epydoc.sourceforge.net/
http://epydoc.sourceforge.net/

Working with the keyboard

pyglet has support for low-level keyboard input suitable for games as well as locale- and device-
independent Unicode text entry.

Keyboard input requires a window which has focus. The operating system usually decides which
application window has keyboard focus. Typically this window appears above all others and may be
decorated differently, though this is platform-specific (for example, Unix window managers sometimes
couple keyboard focus with the mouse pointer).

Y ou can request keyboard focus for a window with the activate method, but you should not rely on this
-- it may simply provide a visual cue to the user indicating that the window requires user input, without
actually getting focus.

Windows created with the WINDOW _STYLE BORDERLESS or WINDOW _STYLE _TOOL style cannot
receive keyboard focus.

It is not possible to use pyglet's keyboard or text events without a window; consider using Python built-
infunctionssuch asr aw_i nput instead.

Keyboard events

The Window.on_key pressand Window.on_key_release events are fired when any key on the keyboard is
pressed or released, respectively. These events are not affected by "key repeat" -- once a key is pressed
there are no more events for that key until it is released.

Both events are parameterised by the same arguments:

def on_key press(synbol, nodifiers):
pass

def on_key rel ease(synbol, nodifiers):
pass

Defined key symbols

The symbol argument is an integer that represents a "virtual" key code. It does //not// correspond to any
particular numbering scheme; in particular the symbol is//not// an ASCII character code.

pyglet has key symbols that are hardware and platform independent for many types of keyboard. These
are defined in pyglet.window.key as constants. For example, the Latin-1 alphabet is simply the letter itself:

key. A
key. B
key. C

The numeric keys have an underscore to make them valid identifiers:

key. 1
key. 2

key. 3

40

Working with the keyboard

Various control and directional keys are identified by name:

key. ENTER or key. RETURN
key. SPACE

key. BACKSPACE

key. DELETE

key. M NUS

key. EQUAL

key. BACKSLASH

key. LEFT
key. Rl GHT
key. UP

key. DO
key. HOVE
key. END

key. PAGEUP
key. PAGEDOMN

key. F1
key. F2

Keys on the number pad have separate symbols:

key. NUM 1
key. NUM 2

key. NUM_EQUAL
key. NUM DI VI DE
key. NUM_MULTI PLY
key. NUM_M NUS
key. NUM PLUS
key. NUM_DECI MAL
key. NUM_ENTER

Some modifier keys have separate symbols for their left and right sides (however they cannot all be
distinguished on all platforms):

key. LCTRL
key. RCTRL
key.LSH FT
key. RSHI FT

Key symbols are independent of any modifiers being held down. For example, lower-case and upper-case
letters both generate the A symbol. Thisis also true of the number keypad.

Modifiers

The modifiers that are held down when the event is generated are combined in a bitwise fashion and
provided in the modi f i er s parameter. The modifier constants defined in pyglet.window.key are:

MOD_SHI FT
MOD_CTRL

41

Working with the keyboard

MOD_ALT Not avail able on Mac OS X

MOD_W NDOWS Avai |l abl e on W ndows only

MOD_COMVAND Avail able on Mac OGS X only

MOD_OPTI ON Avail able on Mac OGS X only

MOD_CAPSLOCK

MOD_NUMLOCK

MOD_SCROLLLOCK

MOD_ACCEL Equi val ent to MOD CTRL, or MOD_COVMAND on Mac OS X

For example, to test if the shift key is held down:

if nodifiers & MOD_SH FT:
pass

Unlike the corresponding key symboals, it is not possible to determine whether the left or right modifier is
held down (though you could emulate this behaviour by keeping track of the key states yourself).

User-defined key symbols

pyglet does not define key symbolsfor every keyboard ever made. For example, non-Latin languages will
have many keys not recognised by pyglet (however, their Unicode representation will still be valid, see
Text and motion events). Even English keyboards often have additional so-called "OEM" keys added by
the manufacturer, which might be labelled "Media", "Volume" or "Shopping", for example.

In these cases pyglet will create akey symbol at runtime based on the hardware scancode of the key. This
is guaranteed to be unique for that model of keyboard, but may not be consistent across other keyboards
with the same labelled key.

The best way to use these keys is to record what the user presses after a prompt, and then check for that
same key symbol. Many commercial games have similar functionality in allowing players to set up their
own key bindings.

Remembering key state

Text

pyglet provides the convenience class KeyStateHandler for storing the current keyboard state. This can be
pushed onto the event handler stack of any window and subsequently queried as a dict:

from pygl et. w ndow i nport key

wi ndow = pygl et.w ndow. W ndow()
keys = key. KeySt at eHandl er ()
wi ndow. push_handl er s(keys)

Check if the spacebar is currently pressed:
i f keys[key. SPACE] :
pass

and motion events

pyglet decouples the keys that the user presses from the Unicode text that is input. There are severd
benefitsto this:

e The complex task of mapping modifiers and key symbols to Unicode characters is taken care of
automatically and correctly.

42

Working with the keyboard

» Key repeat is applied to keys held down according to the user's operating system preferences.

» Dead keys and compose keys are automatically interpreted to produce diacritic marks or combining
characters.

» Keyboard input can berouted viaan input pal ette, for exampleto input charactersfrom Asian languages.
» Text input can come from other user-defined sources, such as handwriting or voice recognition.

The actual source of input (i.e., which keys were pressed, or what input method was used) should be
considered outside of the scope of the application -- the operating system provides the necessary services.

When text is entered into a window, the on_text event isfired:

def on_text(text):
pass

The only parameter provided is a Unicode string. For keyboard input this will usually be one character
long, however more complex input methods such as an input pal ette may provide an entire word or phrase
at once.

You should always use the on_text event when you need to determine a string from a sequence of
keystrokes. Conversely, you never use on_text when you require keysto be pressed (for example, to control
the movement of the player in a game).

Motion events

In addition to entering text, users press keys on the keyboard to navigate around text widgets according
to well-ingrained conventions. For example, pressing the left arrow key moves the cursor one character
to the left.

While you might be tempted to use the on_key press event to capture these events, there are a couple of
problems:

» Key repeat events are not generated for on_key press, yet users expect that holding down the left arrow
key will eventually move the character to the beginning of the line.

« Different operating systems have different conventions for the behaviour of keys. For example, on
Windowsit is customary for the Home key to move the cursor to the beginning of the line, whereas on
Mac OS X the same key moves to the beginning of the document.

pyglet windows providethe on_text_motion event, which takes care of these problems by abstracting away
the key presses and providing your application only with the intended cursor motion:

def on_text_notion(notion):
pass

motion is an integer which is a constant defined in pyglet.window.key. The following table shows the
defined text motions and their keyboard mapping on each operating system.

Constant Behaviour Windows/ Mac OS X
Linux
MOTI ON_UP Move the cursor | Up Up
up
MOTI ON_DOVWN Move the cursor | Down Down
down

43

Working with the keyboard

Constant Behaviour Windows/ Mac OS X
Linux
MOTI ON_LEFT Movethe cursor | Left Left
left
MOTI ON_RI GHT Move the cursor | Right Right
right

MOTI ON_PREVI QUS_WORD | Movethe cursor | Ctrl + Left Option + Left
to the previuos

word

MOT1 ON_NEXT_WORD Movethe cursor | Ctrl + Right Option + Right
to the next word

MOTI ON_ BEA NNI NG_OF_ LI N ove the cursor| Home Command +
to the beginning Left
of the current
line

MOTI ON_END_OF LI NE Move the cursor | End Command +
to the end of the Right
current line

MOTI ON_PREVI QUS_PAGE Move to the|PageUp Page Up
previous page

MOT1 ON_NEXT_PAGE Move to the|PageDown Page Down
next page

MOTI ON_BEA NNI NG_OF_FI LiMove to the|Ctrl + Home Home
beginning of the

document
MOTI ON_END _OF_FI LE Move to the end| Ctrl + End End
of the document
MOT1 ON_BACKSPACE Delete the| Backspace Backspace
previous
character
MOTI1 ON_DELETE Delete the next|Delete Delete
character, or
the current
character

Keyboard exclusivity

Some keystrokes or key combinations normally bypass applications and are handled by the operating
system. Some examples are Alt+Tab (Command+Tab on Mac OS X) to switch applications and the keys
mapped to Expose on Mac OS X.

Y ou can disable these hot keys and have them behave as ordinary keystrokes for your application. This
can be useful if you are developing a kiosk application which should not be closed, or agame in which it
ispossible for a user to accidentally press one of these keys.

To enable this mode, call set_exclusive_keyboard for the window on which it should apply. On Mac OS
X the dock and menu bar will slide out of view while exclusive keyboard is activated.

The following restrictions apply on Windows:

Working with the keyboard

* Most keys are not disabled: a user can still switch away from your application using Ctrl+Escape, Alt
+Escape, the Windows key or Ctrl+Alt+Delete. Only the Alt+Tab combination is disabled.

The following restrictions apply on Mac OS X:
* The power key is not disabled.

Use of this function is not recommended for general release applications or games as it violates user-
interface conventions.

45

Working with the mouse

All pyglet windows can recieveinput from a3 button mouse with a2 dimensional scroll wheel. The mouse
pointer istypically drawn by the operating system, but you can override this and request either adifferent
cursor shape or provide your own image or animation.

Mouse events

All mouse events are dispatched by the window which receives the event from the operating system.
Typically this is the window over which the mouse cursor is, however mouse exclusivity and drag
operations mean thisis not always the case.

The coordinate space for the mouse pointer's location is relative to the bottom-left corner of the window,
withincreasing Y values approaching the top of the screen (note that thisis"upside-down™" compared with
many other windowing toolkits, but is consistent with the default OpenGL projection in pyglet).

The coordinate space for the mouse pointer.
The most basic mouse event is on_mouse_motion which is dispatched every time the mouse moves:

def on_nouse_notion(x, y, dx, dy):
pass

The x and y parameters give the coordinates of the mouse pointer, relative to the bottom-left corner of
the window.

The event is dispatched every time the operating system registers a mouse movement. This is not
necessarily once for every pixel moved -- the operating system typically samples the mouse at a fixed
frequency, and it is easy to move the mouse faster than this. Conversely, if your application is not
processing eventsfast enough you may find that several queued-up mouse eventsare dispatched in asingle
Window.dispatch_events call. There is no need to concern yourself with either of these issues; the latter
rarely causes problems, and the former can not be avoided.

Many games are not concerned with the actual position of the mouse cursor, and only need to know in
which direction the mouse has moved. For example, the mouse in a first-person game typically controls
the direction the player looks, but the mouse pointer itself is not displayed.

The dx and dy parameters are for this purpose: they give the distance the mouse travelled along each axis
to get to its present position. This can be computed naively by storing the previous x and y parameters after
every mouse event, but besides being tiresome to code, it does not take into account the effects of other
obscuring windows. It is best to use the dx and dy parameters instead.

The following events are dispatched when a mouse button is pressed or released, or the mouse is moved
while any button is held down:

46

Working with the mouse

def on_npuse_press(x, y, button, nodifiers):
pass

def on_nouse_rel ease(x, y, button, nodifiers):
pass

def on_nouse_drag(x, y, dx, dy, buttons, nodifiers):
pass

The x, y, dx and dy parameters are as for the on_mouse_motion event. The press and release events do
not require dx and dy parameters as they would be zero in this case. The modifiers parameter is as for the
keyboard events, see Working with the keyboard.

The button parameter signifies which mouse button was pressed, and is one of the following constants:

pygl et . wi ndow. nouse. LEFT
pygl et . wi ndow. nrouse. M DDLE
pygl et . wi ndow. mouse. Rl GHT

The buttons parameter in on_mouse_drag is a bitwise combination of all the mouse buttons currently held
down. For example, to test if the user is performing a drag gesture with the left button:

from pygl et.w ndow i mport mnouse

def on_nopuse_drag(x, y, dx, dy, buttons, nodifiers):
if buttons & nouse. LEFT:
pass

When the user begins a drag operation (i.e., pressing and holding a mouse button and then moving the
mouse), the window in which they began the drag will continue to receive the on_mouse drag event as
long as the button is held down. This is true even if the mouse leaves the window. Y ou generally do not
need to handle this specialy: it is a convention among all operating systems that dragging is a gesture
rather than a direct manipulation of the user interface widget.

There are events for when the mouse enters or leaves a window:

def on_nobuse_enter(x, Yy):
pass

def on_nobuse_| eave(Xx, VY):
pass

The coordinates for on_mouse_leave will lie outside of your window. These events are not dispatched
while adrag operation is taking place.

The mouse scroll wheel generates the on_mouse_scroll event:

def on_nouse_scroll (x, y, scroll_x, scroll _y):
pass

The scroll_y parameter gives the number of "clicks" the wheel moved, with positive numbers indicating
the wheel was pushed forward. The scroll_x parameter is 0 for most mice, however some new mice such
as the Apple Mighty Mouse use a ball instead of a wheel; the scroll_x parameter gives the horizontal
movement in this case. The scale of these numbers is not known; it is typically set by the user in their
operating system preferences.

47

Working with the mouse

Changing the mouse cursor

The mouse cursor can be set to one of the operating system cursors, a custom image, or hidden compl etely.
The changeto the cursor will be applicable only to the window you make the change to. To hide the mouse
cursor, call Window.set_mouse visible:

wi ndow = pygl et.w ndow. W ndow()
wi ndow. set _nouse_vi si bl e(Fal se)

This can be useful if the mouse would obscure text that the user is typing. If you are hiding the mouse
cursor for usein agame environment, consider making the mouse exclusiveinstead; see Mouse exclusivity,
below.

Use Window.set_mouse cursor to change the appearance of the mouse cursor. A mouse cursor
is an instance of MouseCursor. You can obtain the operating system-defined cursors with
Window.get_system mouse cursor:

cursor = wi ndow. get_system nouse_cur sor (w n. CURSOR_HELP)
wi ndow. set _nouse_cur sor (cursor)

The cursorsthat pyglet defines are listed below, along with their typical appearance on Windows and Mac
OS X. The pointer image on Linux is dependent on the window manager.

Constant Windows XP Mac OS X
CURSOR _DEFAULT B 3
CURSOR_CROSSHAIR + +
CURSOR_HAND .{F_n) &
CURSOR _HELP ly? n
CURSOR _NO o X
CURSOR _SIZE N N
CURSOR_SIZE_DOWN 1 T
CURSOR _SIZE_DOWN_LEFT b N
CURSOR _SZE_ DOWN_RIGHT " N
CURSOR SZE_LEFT — q
CURSOR SIZE_LEFT RIGHT R +
CURSOR_SZE RIGHT — b
CURSOR_SIZE_UP 1 +
CURSOR _SIZE_UP_DOWN 1 +
CURSOR SIZE_UP_LEFT " N
CURSOR _SZE_UP_RIGHT N r
CURSOR_TEXT I i
CURSOR WAIT ol
CURSOR_WAIT_ARROW NE N

48

Working with the mouse

Alternatively, you can use your own image as the mouse cursor. Use pyglet.image.load to |oad the image,
then create an ImageMouseCursor with the image and "hot-spot"” of the cursor. The hot-spot is the point
of theimage that corresponds to the actual pointer location on screen, for example, the point of the arrow:

i mage = pygl et.inmage. |l oad(' cursor.png')
cursor = pygl et.w ndow. | mageMouseCur sor (i rage, 16, 8)
Wi ndow. set _nouse_cur sor (cursor)

You can even render a mouse cursor directly with OpenGL. Y ou could draw a 3-dimensional cursor, or
a particle trail, for example. To do this, subclass MouseCursor and implement your own draw method.
The draw method will be called with the default pyglet window projection, even if you are using another
projection in the rest of your application.

Mouse exclusivity

It is possible to take complete control of the mouse for your own application, preventing it being used to
activate other applications. Thisis most useful for immersive games such as first-person shooters.

When you enable mouse-exclusive mode, the mouse cursor is no longer available. It is not merely hidden
-- no amount of mouse movement will makeit leave your application. Because thereis no longer amouse
cursor, the x and y parameters of the mouse events are meaningless; you should use only the dx and dy
parameters to determine how the mouse was moved.

Activate mouse exclusive mode with set_exclusive_mouse:

wi ndow = pygl et.w ndow. Wndow()
wi ndow. set _excl usi ve_nouse(Tr ue)

Y ou should activate mouse exclusive mode even if your window isfull-screen: it will prevent the window
"hitting" the edges of the screen, and behave correctly in multi-monitor setups (a common problem with
commercial full-screen gamesisthat the mouse is only hidden, meaning it can accidentally travel onto the
other monitor where applications are till visible).

Note that on Linux setting exclusive mouse also disables Alt+Tab and other hotkeys for switching
applications. No workaround for this has yet been discovered.

49

Keeping track of time

pyglet's clock module provides functionality for scheduling functions for periodic or one-shot future
execution and for calculating and displaying the application frame rate.

Calling functions periodically

pyglet applications begin execution with:

pygl et. app. run()

Once called, this function doesn't return until the application windows have been closed. This may leave
you wondering how to execute code while the application is running.

Typical applications need to execute code in only three circumstances:

e A user input event (such as a mouse movement or key press) has been generated. In this case the
appropriate code can be attached as an event handler to the window.

« An animation or other time-dependent system needs to update the position or parameters of an object.
WEell call thisa"periodic" event.

A certain amount of time has passed, perhapsindicating that an operation hastimed out, or that a dialog
can be automatically dismissed. We'll call thisa"one-shot" event.

To have afunction called periodicaly, for example, once every 0.1 seconds:

def update(dt):
...
pygl et. cl ock. schedul e_i nt erval (update, 0.1)

The dt parameter gives the number of seconds (due to latency, load and timer inprecision, this might be
dlightly more or less than the requested interval).

Scheduling functionswith aset interval isideal for animation, physics simulation, and game state updates.
pyglet ensures that the application does not consume more resources than necessary to execute the
scheduled functionsin time.

Rather than "limiting the frame rate", as required in other toolkits, simply schedule all your update
functionsfor no lessthan the minimum period your application or gamerequires. For example, most games
need not run at more than 60Hz (60 times a second) for imperceptibly smooth animation, so the interval
given to schedule_interval would be 1/ 60. O (or more).

If you are writing a benchmarking program or otherwise wish to simply run at the highest possible
frequency, use schedule:

def update(dt):
...
pygl et . cl ock. schedul e(updat e)

By default pyglet window buffer swaps are synchronised to the display refresh rate, so you may also want
to disable set_vsync.

For one-shot events, use schedule_once:

def dism ss_dialog(dt):

50

Keeping track of time

...

Dism ss the dialog after 5 seconds.
pygl et . cl ock. schedul e_once(di sm ss_di al og, 5.0)

To stop a scheduled function from being called, including cancelling a periodic function, use
pyglet.clock.unschedule.

Animation techniques

Every scheduled function takes a dt parameter, giving the actual "wall clock" time that passed since the
previous invocation (or the time the function was scheduled, if it's the first period). This parameter can
be used for numerical integration.

For example, a non-accelerating particle with velocity v will travel some distance over a change in time
dt . Thisdistanceiscaculatedasv * dt. Similarly, aparticle under constant acceleration a will have
achangeinvelocity of a * dt.

The following example demonstrates a simple way to move a sprite across the screen at exactly 10 pixels
per second:

sprite = pyglet.sprite.Sprite(inmage)
sprite.dx = 10.0

def update(dt):
sprite.x += sprite.dx * dt
pygl et. cl ock. schedul e_i nterval (update, 1/60.0) # update at 60Hz

Thisisarobust technique for simple animation, asthe velocity will remain constant regardl ess of the speed
or load of the computer.

Some examples of other common animation variables are given in the table below.

Animation parameter Distance Velocity

Rotation Degrees Degrees per second
Position Pixels Pixels per second
Keyframes Frame number Frames per second

The frame rate

Game performance is often measured in terms of the number of timesthe display is updated every second;
that is, the frames-per-second or FPS. Y ou can determine your application's FPSwith asinglefunction cal:

pygl et. cl ock. get fps()

The value returned is more useful than simply taking the reciprocal of dt from a period function, asit is
averaged over adliding window of several frames.

Displaying the frame rate

A simple way to profile your application performance is to display the frame rate while it is running.
Printing it to the console is not ideal asthiswill have a severe impact on performance. pyglet providesthe
ClockDisplay class for displaying the frame rate with very little effort:

51

Keeping track of time

fps_di splay = pygl et. cl ock. C ockDi spl ay()

@ ndow. event
def on_draw():
wi ndow. cl ear ()

f ps_di spl ay. draw()

By default theframeratewill bedrawn in the bottom-right corner of the window in asemi-translucent large
font. See the ClockDisplay documentation for details on how to customise this, or even display another
clock value (such asthe current time) altogether.

User-defined clocks

The default clock used by pyglet uses the system clock to determine the time (i.e, ti me. ti me()).
Separate clocks can be created, however, allowing you to use another time source. This can be useful for
implementing a separate "gametime" to the real-world time, or for synchronising to anetwork time source
or asound device.

Each of the clock functions are aliases for the methods on a global instance of clock.Clock. You can
construct or subclass your own Clock, which can then maintain its own schedule and framerate cal cul ation.
See the class documentation for more details.

52

Displaying text

pyglet provides the font module for rendering high-quality antialiased Unicode glyphs efficiently. Any
installed font on the operating system can be used, or you can supply your own font with your application.

Text rendering is performed with the text module, which can display word-wrapped formatted text. There
isalso support for interactive editing of text on-screen with a caret.

Simple text rendering

The following complete example creates a window that displays "Hello, World" centered vertically and
horizontally:

wi ndow = pygl et.w ndow. W ndow()
| abel = pyglet.text.Label ("Hello, world",
font _name='Ti mes New Roman',
font _si ze=36,
x=wi ndow. wi dt h/ /2, y=wi ndow. hei ght//2,
anchor_x='center', anchor_y='center')

@ ndow. event

def on_draw():
wi ndow. cl ear ()
| abel . draw()

pygl et. app. run()

The example demonstrates the most common uses of text rendering:

» Thefont name and size are specified directly in the constructor. Additional parameters exist for setting
the bold and italic styles and the color of the text.

» The position of thetext isgiven by the x and y coordinates. The meaning of these coordinatesis given
by theanchor _x andanchor _y parameters.

» The actual text is drawn with the Label.draw method. Labels can aso be added to a graphics batch;
see Graphics for details.

The HTMLLabel class is used similarly, but accepts an HTML formatted string instead of parameters
describing the style. This alows the label to display text with mixed style:

| abel = pygl et.text.HTM. Label (
"Hell o, <i>world</i>",
x=wi ndow. wi dt h/ /2, y=wi ndow. hei ght//?2,
anchor_x='center', anchor_y='center')

See Formatted text for details on the subset of HTML that is supported.

The document/layout model

The Label class demonstrated above presents a simplified interface to pyglet's complete text rendering
capabilities. The underlying TextLayout and AbstractDocument classes provide a"model/view" interface
to al of pyglet'stext features.

53

Displaying text

TextLayout > AbstractDocument

T T

ScrollableTextLayout

T

IncrementalTextLayout

UnformattedDocument FormattedDocument

Documents

A document is the "model" part of the architecture, and describes the content and style of the text to be
displayed. There are two concrete document classes. UnformattedDocument and FormattedDocument.
UnformattedDocument models a document containing text in just one style, whereas FormattedDocument
allowsthe style to change within the text.

An empty, unstyled document can be created by constructing either of the classes directly. Usually you
will want to initialise the document with some text, however. The decode text, decode attributed and
decode_html functions return adocument given a source string. For decode_text, thisissimply aplain text
string, and the return value is an Unfor mattedDocument:

docunent = pyglet.text.decode_text('Hello, world.")
decode_attributed and decode_html are described in detail in the next section.
The text of adocument can be modified directly as a property on the object:
docunent . text = 'Goodbye, cruel world.'

However, if small changes are being made to the document it can be more efficient (when coupled with
an appropriate layout; see below) to use the remove_text and insert_text methods instead.

Layouts

The actua layout and rendering of a document is performed by the TextLayout classes. This split exists
to reduce the complexity of the code, and to allow a single document to be displayed in multiple layouts
simultaneously (in other words, many layouts can display one document).

Each of the TextLayout classes perform layout in the same way, but represent a trade-off in efficiency of
update against efficiency of drawing and memory usage.

The base TextLayout class uses little memory, and shares its graphics group with other TextLayout
instances in the same batch (see Batched rendering). When the text or style of the document is modified,
or the layout constraints change (for example, the width of the layout changes), the entire text layout
is recalculated. This is a potentially expensive operation, especially for long documents. This makes
TextLayout suitable for relatively short or unchanging documents.

ScrollableTextLayout isasmall extension to TextLayout that clipsthetext to aspecified view rectangle, and
allowstext to be scrolled within that rectangle without performing thelayout cal cul uation again. Because of
this clipping rectangl e the graphics group cannot be shared with other text layouts, sofor ideal performance
ScrollableTextLayout should be used only if this behaviour is required.

Incremental TextLayout uses a more sophisticated layout algorithm that performs less work for small
changes to documents. For example, if a document is being edited by the user, only the immediately

Displaying text

affected lines of text are recalculated when a character is typed or deleted. Incremental TextLayout also
performsview rectangle culling, reducing the amount of layout and rendering required when the document
is larger than the view. Incremental TextLayout should be used for large documents or documents that
change rapidly.

All the layout classes can be constructed given a document and display dimensions:
| ayout = pyglet.text.|ayout. Text Layout (docunent, wi dth, height)

Additional arguments to the constructor allow the specification of a graphics batch and group
(recommended if many layouts are to be rendered), and the optional multiline flag. To render more than
one line of text (either through word-wrapping or explicit line breaks) multiline must be Tr ue.

Like labels, layouts are positioned through their x, y, anchor_x and anchor_y properties. Note that unlike
Abstractimage, the anchor properties accept a string such as "bott onf' or "cent er" instead of a
numeric displacement.

Formatted text

The FormattedDocument class maintains styleinformation for individual charactersin thetext, rather than
asingle style for the whole document. Styles can be accessed and modified by name, for example:

Get the font nane used at character index O
font _name = docunent.get_style(' font_nanme', 0)

Set the font name and size for the first 5 characters
docunent . set _style(0, 5, dict(font_nanme="Arial', font_size=12))

Internally, character styles are run-length encoded over the document text; so longer documents with few
style changes do not use excessive memory.

From the document's point of view, there are no predefined style names: it simply maps names and
character rangesto arbitrary Python values. It isthe TextLayout classesthat interpret this styleinformation;
for example, by selecting a different font based on the f ont _nane style. Unrecognised style names are
ignored by the layout -- you can use this knowledge to store additional data alongside the document text
(for example, a URL behind a hyperlink).

Character styles

The following character styles are recognised by all TextLayout classes.

Where an attribute is marked "as a distance" the value is assumed to be in pixelsif given asanint or float,
otherwise a string of the form " Qu" isrequired, where O is the distance and u is the unit; one of " px"
(pixels), "pt " (points), " pc" (picas), " cmt' (centimeters), " mi' (millimeters) or "i n" (inches). For
example, " 14pt " isthe distance covering 14 points, which at the default DPI of 96 is 18 pixels.

font _nane Font family name, as given to pyglet.font.load.

font_size Font size, in points.

bol d Boolean.

italic Boolean.

underl i ne 4-tuple of ints in range (0, 255) giving RGBA underline color, or None

(default) for no underline.

55

Displaying text

ker ni ng Additional space to insert between glyphs, as a distance. Defaultsto 0.

basel i ne Offset of glyph baseline from line baseline, as a distance. Positive values give
a superscript, negative values give a subscript. Defaults to O.

col or 4-tuple of intsin range (0, 255) giving RGBA text color

background_col or 4-tuple of intsin range (0, 255) giving RGBA text background color; or None
for no background fill.

Paragraph styles

Although FormattedDocument does not distinguish between character- and paragraph-level styles,
TextLayout interprets the following styles only at the paragraph level. Y ou should take care to set these
styles for complete paragraphs only, for example, by using FormattedDocument.set_paragraph_style.

These styles are ignored for layouts without thermul ti | i ne flag set.
align "l eft" (default),"center" or"right".

i ndent Additional horizontal space to insert before the first glyph of the first line of a
paragraph, as a distance.

| eadi ng Additional space to insert between consecutive lines within a paragraph, as a
distance. Defaults to 0.

I i ne_spaci ng Distance between consecutive baselines in a paragraph, as a distance. Defaults to
None, which automatically calculates the tightest line spacing for each line based
on the maximum font ascent and descent.

mar gi n_| eft Left paragraph margin, as a distance.

mar gi n_ri ght Right paragraph margin, as a distance.

mar gi n_t op Margin above paragraph, as a distance.

mar gi n_bottom Margin below paragraph, as adistance. Adjacent margins do not collapse.

tab_stops List of horizontal tab stops, as distances, measured from the |eft edge of the text
layout. Defaultsto the empty list. When thetab stops are exhausted, they implicitly
continue at 50 pixel intervals.

wr ap Boolean. If True (the default), text wraps within the width of the layout.

For the purposes of these attributes, paragraphs are split by the newline character (U+0010) or the
paragraph break character (U+2029). Line breakswithin a paragraph can beforced with character U+2028.

Attributed text

pyglet provides two formats for decoding formatted documents from plain text. These are useful for
loading preprepared documents such as help screens. At thistime thereisno facility for saving (encoding)
formatted documents.

The attributed text format is an encoding specific to pyglet that can exactly describe any
FormattedDocument. Y ou must use this encoding to access all of the features of pyglet text layout. For a
more accessible, yet less featureful encoding, see the HTML encoding, described below.

56

Displaying text

The following example shows a simple attributed text encoded document:

Chapter 1

My father's fanmily name being Pirrip, and nmy Christian name Philip,
ny infant tongue could nake of both names nothing | onger or nore
explicit than Pip. So, | called nyself Pip, and cane to be called
Pi p.

| give Pirrip as ny father's fanily name, on the authority of his
tonbstone and ny sister - Ms. Joe Gargery, who married the

bl acksmith. As | never saw ny father or nmy nother, and never saw
any |ikeness of either of them (for their days were |long before the
days of photographs), ny first fancies regardi ng what they were

i ke, were unreasonably derived fromtheir tonbstones.

Newlines are ignored, unless two are made in succession, indicating a paragraph break. Line breaks can
be forced with the\ \ sequence:

This is the way the world ends \\
This is the way the world ends \\
This is the way the world ends \\
Not with a bang but a whi nmper.

Line breaks are also forced when the text is indented with one or more spaces or tabs, which is useful
for typesetting code:

The foll owi ng paragraph has hard |ine breaks for every line of code:

i mport pygl et

wi ndow = pygl et.w ndow. W ndow()
pygl et . app. run()

Text can be styled using a attribute tag:
This sentence nakes a {bold True}bol d{bol d Fal se} statenent.

The attribute tag consists of the attribute name (in this example, bol d) followed by a Python booal, int,
float, string, tuple or list.

Unlike most structured documents such as HTML, attributed text has no concept of the "end" of a
style; styles merely change within the document. This corresponds exactly to the representation used by
FormattedDocument internally.

Some more examples follow:

{font_name 'Tines New Roman'}{font_size 28}Hel |l o{font_size 12},
{color (255, 0, O, 255)}world{color (0O, 0, 0, 255)}!

(This example uses 28pt Times New Roman for theword "Hello", and 12pt red text for the word "world").

Paragraph styles can be set by prefixing the style name with a period (.). This ensures the style range
exactly encompasses the paragraph:

{.margin_left "12px"}This is a block quote, as the margin is inset.

57

Displaying text

{.margin_left "24px"}This paragraph is inset yet again.

Attributed text can be loaded as a Unicode string. In addition, any character can be inserted given its
Unicode code point in numeric form, either in decimal:

This text is Copyright {#169}.

or hexadecimal:

This text is Copyright {#xa9}.

The characters{ and} can be escaped by duplicating them:

Attributed text uses nany "{{" and "}}" characters.
Usethedecode_at tri but ed function to decode attributed text into a For mattedDocument:

docunent = pyglet.text.decode attributed('Hello, {bold True}world")

HTML

While attributed text gives access to all of the features of FormattedDocument and TextLayout, it is quite
verbose and difficult produce text in. For convenience, pyglet provides an HTML 4.01 decoder that can
tranglate a small, commonly used subset of HTML into a FormattedDocument.

Note that the decoder does not preserve the structure of the HTML document -- all notion of element
hierarchy islost in the trandlation, and only the visible style changes are preserved.

The following example uses decode_html to create a FormattedDocument from a string of HTML:
docunent = pyglet.text.decode _htm (' Hell o, worl d")
The following elements are supported:

B BLOCKQUOTE BR CENTER CODE DD DIR DL EM FONT H1 H2 H3 H4 HS5 H6 | | MG KBD
LI MENU OL P PRE Q SAMP STRONG SUB SUP TT U UL VAR

The st yl e attribute is not supported, so font sizes must be given as HTML logical sizesin the range 1
to 7, rather than as point sizes. The corresponding font sizes, and some other stylesheet parameters, can
be modified by subclassing HTMLDecoder.

Custom elements

Graphics and other visual elements can be inserted inline into a document using
AbstractDocument.insert_element. For example, inline elements are used to render HTML images
included with the | MGtag. Thereis currently no support for floating or absolutely-positioned elements.

Elements must subclass InlineElement and override the place and remove methods. These methods
are called by TextLayout when the element becomes or ceases to be visible. For TextLayout and
ScrollableTextLayout, this is when the element is added or removed from the document; but for
Incremental TextLayout the methods are also called as the element scrollsin and out of the viewport.

The constructor of InlineElement gives the width and height (separated into the ascent above the baseline,
and descent below the baseline) of the element.

Typicaly an InlineElement subclass will add graphics primitives to the layout's graphics batch; though
applications may choose to simply record the position of the element and render it separately.

58

Displaying text

The position of the element in the document text is marked with a NUL character (U+0000) placeholder.
This has the effect that inserting an element into a document increases the length of the document text
by one. Elements can also be styled as if they were ordinary character text, though the layout ignores any
such style attributes.

User-editable text

While pyglet does not come with any complete GUI widgets for applications to use, it does implement
many of the features required to implement interactive text editing. These can be used as a basis for a
more complete GUI system, or to present a simple text entry field, as demonstrated in the exanpl es/
t ext _i nput . py example.

Incremental TextLayout should aways be used for text that can be edited by the user.
This class maintains information about the placement of glyphs on screen, and so
can map window coordinates to a document position and vice-versa. These methods
are get_position_from point, get_point_from position, get_line from point, get_point_from line,
get_line_from_position, get_position_from_line, get_position_on_line and get_line_count.

The viewable rectangle of the document can be adjusted using a document position instead of a scrollbar
using the ensure_line visible and ensure_x_visible methods.

Incremental TextLayout can display a current text selection by temporarily overriding the foreground and
background colour of the selected text. The selection_start and selection_end properties give the range of
the selection, and selection_color and selection_background_color the colors to use (defaulting to white
on blue).

The Caret class implements an insertion caret (cursor) for IncrementalTextLayout. This includes
displaying the blinking caret at the correct location, and handling keyboard, text and mouse events. The
behaviour in response to the eventsis very similar to the system GUIs on Windows, Mac OS X and GTK.
Using Caret frees you from using the Incremental TextLayout methods described above directly.

The following example creates a document, a layout and a caret and attaches the caret to the window to
listen for events:

i mport pygl et

wi ndow = pygl et.w ndow. W ndow()

docunent = pygl et.text.docurment. FormattedDocunent ()

| ayout = pyglet.text.layout.I|ncrenental Text Layout(docunent, wi dth, height)
caret = pyglet.text.caret. Caret (|l ayout)

wi ndow. push_handl er s(caret)

Whenthelayout isdrawn, the caret will a so bedrawn, so thisexampleisnearly complete enough to display
the user input. However, it is suitable for use when only one editable text layout isto be in the window. If
multiple text widgets are to be shown, some mechanism is needed to dispatch eventsto the widget that has
keyboard focus. An example of how to do thisis given in the examples/text_input.py example program.

Loading system fonts

The layout classes automatically load fonts as required. You can also explicitly load fonts to implement
your own layout algorithms.

To load a font you must know its family name. This is the name displayed in the font dialog of any
application. For example, all operating systemsinclude the Times New Roman font. Y ou must al so specify
the font size to load, in points;

59

Displaying text

Load "Ti mes New Roman" at 16pt
times = pyglet.font.|oad(' Ti mres New Roman', 16)

Bold and italic variants of the font can specified with keyword parameters:

times_bold = pyglet.font.load(' Ti mes New Roman', 16, bol d=True)
times_italic = pyglet.font.load(' Ti nes New Ronman', 16, italic=True)
times_bold_ italic = pyglet.font.|oad(' Ti nes New Roman', 16,

bol d=True, italic=True)

For maximum compatibility on all platforms, you can specify a list of font names to load, in order of
preference. For example, many users will have installed the Microsoft Web Fonts pack, which includes
Verdana, but this cannot be guaranteed, so you might specify Arial or Helvetica as suitable alternatives:

sans_serif = pyglet.font.load((' Verdana', 'Helvetica', '"Arial'), 16)

If you do not particularly care which font is used, and just need to display some readable text, you can
specify None as the family name, which will load a default sans-serif font (Helveticaon Mac OS X, Arial
on Windows XP):

sans_serif = pyglet.font.|oad(None, 16)

Font sizes

When loading afont you must specify the font sizeit isto be rendered at, in points. Points are a somewhat
historical but conventional unit used in both display and print media. There are various conflicting
definitions for the actual length of a point, but pyglet uses the PostScript definition: 1 point = 1/72 inches.

Font resolution

The actual rendered size of the font on screen depends on the display resolution. pyglet uses adefault DPI
of 96 on all operating systems. Most Mac OS X applications use a DPI of 72, so the font sizes will not
match up on that operating system. However, application devel opers can be assured that font sizesremain
consistent in pyglet across platforms.

The DPI can be specified directly in the pyglet.font.load function, and as an argument to the TextLayout
constructor.

Determining font size

Once afont isloaded at a particular size, you can query its pixel size with the attributes:

Font . ascent
Font . descent

These measurements are shown in the diagram below.

dog.

60

ascent

descent

Displaying text

Font metrics. Note that the descent is usually negative as it descends below the baseline.
Y ou can calculate the distance between successive lines of text as.
ascent - descent + |eading

where leading is the number of pixelsto insert between each line of text.

Loading custom fonts

You can supply a font with your application if it's not commonly installed on the target platform. You
should ensure you have alicense to distribute the font -- the terms are often specified within the font file
itself, and can be viewed with your operating system's font viewer.

Loading a custom font must be performed in two steps:
1. Let pyglet know about the additional font or font files.
2. Load the font by its family name.

For example, let's say you have the Action Man font in afile called act i on_man. t t f . The following
code will load an instance of that font:

pyglet.font.add_file('action_man.ttf")
action_man = pyglet.font.|oad(' Acti on Man')

Similarly, once the font file has been added, the font name can be specified as a style on alabel or layout:
| abel = pyglet.text.Label ("Hello', font_name='"Action Man')

Fontsare often distributed in separatefilesfor each variant. Action Man Bold would probably be distributed
asaseparatefilecalled acti on_man_bol d. tt f ; you need to let pyglet know about this as well:

font.add file('action_nan_bold.ttf")
action_nan_bold = font.| oad(' Action Man', bol d=True)

Note that even when you know the filename of the font you want to load, you must specify the font's
family name to pyglet.font.load.

Y ou need not have the file on disk to add it to pyglet; you can specify any file-like object supporting the
read method. This can be useful for extracting fonts from a resource archive or over a network.

If the custom font is distributed with your application, consider using the Application resources.

Supported font formats

pyglet can load any font file that the operating system natively supports. The list of supported formatsis
shown in the table below.

Font For mat Windows XP |Mac OSX Linux
(FreeType)
TrueType (.ttf) X X X
PostScript Type 1 (.pfm, .pfb) X X X
Windows Bitmap (.fnt) X X

61

Displaying text

Font Format Windows XP |Mac OSX Linux
(FreeType)

Mac OS X DataFork Font (.dfont) X

OpenType (.ttf) © X

X11 font formats PCF, BDF, X

SFONT

Bitstream PFR (.pfr) X

NI OpenType fonts are backward compatible with TrueType, so while the advanced OpenType features can
only be rendered with Mac OS X, the files can be used on any platform. pyglet does not currently make use
of the additional kerning and ligature information within OpenType fonts.

OpenGL font considerations

Text in pyglet isdrawn using textured quads. Each font maintains a set of one or more textures, into which
glyphs are uploaded as they are needed. For most applications this detail is transparent and unimportant,
however some of the details of these glyph textures are described below for advanced users.

Context affinity

When afont is loaded, it immediately creates a texture in the current context's object space. Subsequent
textures may need to be created if there is not enough room on the first texture for all the glyphs. Thisis
done when the glyph isfirst requested.

pyglet always assumes that the object space that was active when the font was loaded is the active one
when any texture operations are performed. Normally this assumption is valid, as pyglet shares object
spaces between al contexts by default. There are afew situationsin which thiswill not be the case, though:

» When explicitly setting the context share during context creation.
» When multiple display devices are being used which cannot support a shared context object space.

In any of these cases, you will need to rel oad the font for each object space that it's needed in. pyglet keeps
a cache of fonts, but does so per-object-space, so it knows when it can reuse an existing font instance or
if it needsto load it and create new textures. Y ou will also need to ensure that an appropriate context is
active when any glyphs may need to be added.

Blend state

The glyph textures have an internal format of G__ ALPHA, which provides a simple way to recolour and
blend antialiased text by changing the vertex colors. pyglet makes very few assumptions about the OpenGL
state, and will not ater it besides changing the currently bound texture.

The following blend state is used for drawing font glyphs:

frompyglet.gl inport *
gl Bl endFunc(G._SRC ALPHA, GL_ONE M NUS_SRC ALPHA)
gl Enabl e(GL_BLEND)

All glyph textures use the G__ TEXTURE_2D target, so you should ensure that a higher priority target
suchas GL_TEXTURE_3Dis not enabled before trying to render text.

62

Images

pyglet provides functions for loading and saving images in various formats using native operating system
services. pyglet can also work with the Python Imaging Library [http://www.pythonware.com/products/
pil/] (PIL) for accessto more file formats.

L oaded images can be efficiently provided to OpenGL asatexture, and OpenGL textures and framebuffers
can be retrieved as pyglet images to be saved or otherwise manipulated.

pyglet aso provides an efficient and comprehensive Sprite class, for displaying images on the screen with
an optional transform.

Loading an image

Images can be loaded using the pyglet.image.load function:
kitten = pyglet.imge.load('kitten.png')

If the image is distributed with your application, consider using the pyglet.resource module (see
Application resources).

Without any additional arguments, load will attempt to load the filename specified using any available
image decoder. Thiswill allow you to load PNG, GIF, JPEG, BMP and DDS files, and possibly other files
as well, depending on your operating system and additional installed modules (see the next section for
details). If the image cannot be loaded, an ImageDecodeException will be raised.

Y ou can load an image from any file-like object providing aread method by specifying the file keyword
parameter:

kitten_stream = open('kitten.png', 'rb")
kitten = pyglet.imge.load('kitten.png', file=kitten_stream

In this case the filename ki t t en. png is optional, but gives a hint to the decoder as to the file type (it
is otherwise unused).

pyglet provides the following image decoders:

Module Class Description

pygl et . i mage. codecs. dds DDSI nageDecoderReads Microsoft
DirectDraw Surface
files containing
compressed textures

pygl et . i mage. codecs. gdi pl us |GDI Pl usDecoder |Uses Windows GDI
+ services to decode
images.

pygl et. i mage. codecs. gdkpi xbufl@dkPi xbuf 21 magdBesother GTK-2.0
GDK functions to
decode images.

pygl et . i mage. codecs. pi | Pl LI mageDecoderWrapper interface
around PIL Image
class.

63

http://www.pythonware.com/products/pil/
http://www.pythonware.com/products/pil/
http://www.pythonware.com/products/pil/

Images

Module Class Description

pygl et . i mage. codecs. png PNG mageDecoderPNG decoder
written in pure
Python.

pygl et. i mage. codecs. qui ckti neQui ckTi nel nageMssderMac OS
X QuickTime to
decode images.

Each of these classes registers itself with pyglet.image with the filename extensions it supports. The load
function will try each image decoder with a matching file extension first, before attempting the other
decoders. Only if every image decoder fails to load an image will ImageDecodeException be raised (the
origin of the exception will be the first decoder that was attempted).

You can override this behaviour and specify a particular decoding instance to use. For example, in the
following examplethe pure Python PNG decoder isaways used rather than the operating system's decoder:

from pygl et. i nage. codecs. png i nport PNG mageDecoder
kitten = pyglet.imge.load('kitten.png', decoder=PNG mageDecoder ())

This use is not recommended unless your application has to work around specific deficiences in an
operating system decoder.

Supported image formats

Thefollowing tableliststheimage formats that can beloaded on each operating system. If PIL isinstalled,
any additional formats it supports can also be read. See the Python Imaging Library Handbook [http://
www.pythonware.com/library/pil/handbook/index.htm] for alist of such formats.

Extension Description |Windows |MacOSX |Linux o
XP

. bmp Windows X X X
Bitmap

. dds Microsoft X X X
DirectDraw
Surface 1°

.exif Exif X

.gif Graphics X X X
Interchange
Format

.1 P9 .jpeg JPEG/IFF | X X X
Image

P2 .jpx JPEG 2000 X

. pcx PC X
Paintbrush
Bitmap
Graphic

. png Portable X X X
Network
Graphic

http://www.pythonware.com/library/pil/handbook/index.htm
http://www.pythonware.com/library/pil/handbook/index.htm
http://www.pythonware.com/library/pil/handbook/index.htm

Images

Extension Description (Windows |MacOSX |Linux o
XP
. pnm PBM X
Portable Any
Map Graphic
Bitmap
.ras Sun raster X
graphic
.tga Truevision X
Targa
Graphic
Jtif Lt ff Tagged X X X
Image File
Format
. Xxbm X11 bitmap X X
. Xpm X11icon X X

Requires GTK 2.0 or later.
0nly S3TC compressed surfaces are supported. Depth, volume and cube textures are not supported.

The only supported save format is PNG, unless PIL isinstalled, in which case any format it supports can
be written.

Working with images

The pyglet.image.load function returns an Abstractimage. The actual class of the object depends on the
decoder that was used, but al images support the following attributes:

wi dt h The width of theimage, in pixels.

hei ght The height of theimage, in pixels.

anchor _x Distance of the anchor point from the left edge of the image, in pixels
anchor _y Distance of the anchor point from the bottom edge of the image, in pixels

The anchor point defaultsto (0, 0), though some image formats may contain an intrinsic anchor point. The
anchor point is used to align the image to a point in space when drawing it.

Y ou may only want to use a portion of the complete image. Y ou can use the get_region method to return
an image of arectangular region of a source image:

i mage_part = kitten.get_region(x=10, y=10, wi dth=100, hei ght=100)

This returns an image with dimensions 100x100. The region extracted from kitten is aligned such that the
bottom-left corner of the rectangle is 10 pixels from the left and 10 pixels from the bottom of the image.

Image regions can be used as if they were complete images. Note that changes to an image region may or
may not be reflected on the source image, and changes to the source image may or may not be reflected
on any region images. Y ou should not assume either behaviour.

65

Images

The Abstractimage hierarchy

The following sections deal with the various concrete image classes. All images subclass Abstractlmage,
which provides the basic interface described in previous sections.

Abstractimage

T
| |

ImageData CompressedimageData Texture ImageGrid
ImageDataRegion TextureRegion

The Abstractl mage class hierarchy.

An image of any class can be converted into a Texture or ImageData using the get texture and
get_image data methods defined on Abstractimage. For example, to load an image and work with it as
an OpenGL texture:

kitten = pyglet.imge.load('kitten.png').get_texture()

There is no penalty for accessing one of these methods if object is already of the requested class. The
following table shows how concrete classes are converted into other classes:

Original class .get _texture()|.get_imge_data()
Texture No change gl Get Tex| mage2D
TextureRegion No change gl Get Tex| mage2p,
crop resulting
image.
ImageData gl Texl mage2D?! |No change
ImageDataRegion gl Texl mageZDl No change
CompressedimageData gl Conpr essedTeW/maﬁeZD
Bufferimage gl CopyTexSubl negedadPi xel s

1ImageData caches the texture for future use, so there is no performance penalty for repeatedly blitting an
ImageData.

2If the required texture compression extension is not present, the image is decompressed in memory and then
supplied to OpenGL viagl Tex| mage?2D.

81t is not currently possible to retrieve ImageData for compressed texture images. This
feature may be implemented in a future release of pyglet. One workaround is to create
a texture from the compressed image, then read the image data from the texture, i.e,
conpressed_i mage. get _texture().get_i mage_data().

“Buffer| mageMask cannot be converted to Texture.

Y ou should try to avoid conversions which use gl Get Tex| mage2D or gl ReadPi xel s, asthese can
impose a substantial performance penalty by transferring data in the "wrong" direction of the video bus,
especialy on older hardware.

66

Images

Accessing or providing pixel data

The ImageData class represents an image as a string or sequence of pixel data, or as a ctypes pointer.
Details such as the pitch and component layout are also stored in the class. Y ou can access an ImageData
object for any image with get_image data:

kitten = pyglet.imge.load(' kitten.png').get_inage_data()

The design of ImageData isto allow applicationsto access the detail in the format they prefer, rather than
having to understand the many formats that each operating system and OpenGL make use of.

The pitch and format properties determine how the bytes are arranged. pitch gives the number of bytes
between each consecutive row. The data is assumed to run from left-to-right, bottom-to-top, unless pitch
is negative, in which case it runs from left-to-right, top-to-bottom. There is no need for rowsto betightly
packed; larger pitch values are often used to aligh each row to machine word boundaries.

The format property gives the number and order of color components. It is a string of one or more of the
letters corresponding to the components in the following table:

Red
Green

Blue
Alpha
Luminance

> 0 O30

I Intensity

For example, aformat string of " RGBA" corresponds to four bytes of colour data, in the order red, green,
blue, alpha. Note that machine endianness has no impact on the interpretation of aformat string.

The length of aformat string always gives the number of bytes per pixel. So, the minimum absolute pitch
foragivenimageisl en(kitten. format) * kitten. w dth.

To retrieve pixel datain a particular format, use the get_data method, specifying the desired format and
pitch. The following example reads tightly packed rowsin RGB format (the alpha component, if any, will
be discarded):

kitten = kitten.get _inmage data()
data = kitten.get _data(' RGB', kitten.width * 3)

data always returns a string, however it can be set to a ctypes array, stdlib array, list of byte data, string,
or ctypes pointer. To set the image data use set_data, again specifying the format and pitch:

kitten.set_data(' RGB', kitten.width * 3, data)

You can also create ImageData directly, by providing each of these attributes to the constructor. Thisis
any easy way to load textures into OpenGL from other programs or libraries.

Performance concerns

pyglet can use several methods to transform pixel data from one format to another. It will always try
to select the most efficient means. For example, when providing texture data to OpenGL, the following
possibilities are examined in order:

67

Images

1. Canthedatabe provided directly using abuilt-in OpenGL pixel format suchasG._ RGB or GL_ RGBA?
2. Isthere an extension present that handles this pixel format?
3. Can the data be transformed with a single regular expression?

4. If none of the above are possible, theimage will be split into separate scanlines and aregular expression
replacement done on each; then the lines will be joined together again.

The following table shows which image formats can be used directly with steps 1 and 2 above, aslong as
theimage rows aretightly packed (that is, the pitch is equal to the width timesthe number of components).

Format Required extensions

e

K

LA

"R

"G

Y

" AT

" ARGB" G._EXT_bgra and
GL_APPLE_ packed_pi xel s

" ABCR" GL_EXT_abgr

"BGR' GL_EXT bgra

" BGRA" GL_EXT _bgra

If the image data is not in one of these formats, a regular expression will be constructed to pull it into
one. If the rows are not tightly packed, or if the image is ordered from top-to-bottom, the rows will be
split before the regular expression is applied. Each of these may incur a performance penalty -- you should
avoid such formats for real-time texture updates if possible.

Image sequences and atlases

Sometimes a single image is used to hold several images. For example, a"sprite sheet" is an image that
contains each animation frame required for a character sprite animation.

pyglet provides convenience classes for extracting the individual images from such a composite image as
if it were a simple Python sequence. Discrete images can also be packed into one or more larger textures
with texture bins and atlases.

68

Images

AbstractimageSequence

==

ImageGrid TextureSequence

T

UniformTextureSequence

o

TextureGrid Texture3D

The Abstractl mageSequence class hierarchy.
Image grids

An "image grid" isasingle image which is divided into several smaller images by drawing an imaginary
grid over it. Thefollowing image shows an image used for the expl osion animation in the Astraea exampl e.

An image consisting of eight animation frames arranged in agrid.

This image has one row and eight columns. Thisis all the information you need to create an ImageGrid
with:

expl osi on = pygl et.imge. | oad(' expl osi on. png')
expl osi on_seq = pygl et.image. | nageG i d(expl osion, 1, 8)

The images within the grid can now be accessed asif they were their own images:

frame_1
frame_2

= expl osi on_seq[0]

= expl osi on_seq[1]

Images with more than one row can be accessed either as a single-dimensional sequence, or as a (row,
column) tuple; as shown in the following diagram.

69

Images

(2,3)
8 9 10 11 T
(2,0) (2, 1) (2,2) (2, 3) .,
(1,3)
4 5 6 7 .
(1, 0) (1, 1) (1,2) (1, 3)
3 [3:16]
0 1 2 3 (0, 1(0,3):(3,4)]
(0, 0) (0, 1) (0, 2) (0, 3)
2 3
5 6
(1,1) (@, 2)
0 T
1 2
(0, 1) (0, 2)
[1:11]
[(0,1):(2,3)]

Animage grid with several rows and columns, and the dlicesthat can be used to accessit.

Image sequences can be diced like any other sequence in Python. For example, the following obtains the
first four frames in the animation:

start_franmes = expl osion_seq[: 4]

For efficient rendering, you should use a TextureGrid. This uses a single texture for the grid, and each
individual image returned from a slice will be a TextureRegion:

expl osion_tex_seq = i mage. TextureG i d(expl osi on_seq)

Because TextureGrid is also a Texture, you can use it either as individual images or as the whole grid
at once.

3D textures

TextureGrid is extremely efficient for drawing many sprites from a single texture. One problem you may
encounter, however, is bleeding between adjacent images.

When OpenGL renders a texture to the screen, by default it obtains each pixel colour by interpolating
nearby texels. You can disable this behaviour by switching to the GL_NEAREST interpolation mode,
however you then lose the benefits of smooth scaling, distortion, rotation and sub-pixel positioning.

Y ou can aleviate the problem by always|eaving a 1-pixel clear border around each image frame. Thiswill
not solve the problem if you are using mipmapping, however. At this stage you will need a 3D texture.

You can create a 3D texture from any segquence of images, or from an ImageGrid. The images must all
be of the same dimension, however they need not be powers of two (pyglet takes care of this by returning
TextureRegion as with aregular Texture).

In the following example, the explosion texture from above is uploaded into a 3D texture:

expl osion_3d = pygl et.inmage. Texture3D. create_for_image_gri d(expl osi on_seq)

Y ou could also have stored each image as a separate file and used Texture3D.create for_imagesto create
the 3D texture.

70

Images

Once created, a 3D texture behaves like any other ImageSequence; dlices return TextureRegion for an
image plane within the texture. Unlike a TextureGrid, though, you cannot blit a Texture3D in its entirety.

Texture bins and atlases

Image grids are useful when the artist has good tools to construct the larger images of the appropriate
format, and the contained images all have the same size. However it is often simpler to keep individual
images as separate files on disk, and only combine them into larger textures at runtime for efficiency.

A TextureAtlasisinitially an empty texture, but images of any size can be added toit at any time. The atlas
takes care of tracking the "free" areas within the texture, and of placing images at appropriate locations
within the texture to avoid overlap.

It's possible for a TextureAtlasto run out of space for new images, so applicationswill need to either know
the correct size of the texture to alocate initally, or maintain multiple atlases as each one fills up.

The TextureBin class provides a ssmple means to manage multiple atlases. The following example loads
alist of images, then inserts those images into a texture bin. The resulting list is a list of TextureRegion
images that map into the larger shared texture atlases:

i mges = [
pygl et.i mage. | oad(' i ngl. png'),
pygl et.i mage. | oad(' i ng2. png'),
...

]

bin = pyglet.inmge. atl as. Text ureBin()
i mmges = [bin.add(inmage) for image in inages]

The pyglet.resource module (see Application resources) uses texture bins internally to efficiently pack
images automatically.

Animations

While image sequences and atlases provide storage for related images, they alone are not enough to
describe a complete animation.

The Animation class manages a list of AnimationFrame objects, each of which references an image and
a duration, in seconds. The storage of the images is up to the application developer: they can each be
discrete, or packed into atexture atlas, or any other technique.

An animation can be loaded directly from a GIF 89aimagefile with load_animation (supported on Linux,
Mac OS X and Windows) or constructed manually from alist of images or an image sequence using the
classmethods (in which casethetiming information will also need to be provided). Theadd to_texture bin
method provides a convenient way to pack the image framesinto atexture bin for efficient access.

Individual frames can be accessed by the application for use with any kind of rendering, or the entire
animation can be used directly with a Sorite (see next section).

The following example loads a GIF animation and packs the images in that animation into a texture bin.
A sprite is used to display the animation in the window:

ani mation = pyglet.inage.load_ani mati on(' ani mation.gif")
bin = pyglet.inmge. TextureBin()
ani mati on. add_t o_t exture_bi n(bin)

71

Images

sprite = pyglet.sprite. Sprite(animation)

wi ndow = pygl et.w ndow. W ndow()
@ ndow. event
def on_draw():

sprite.draw()

pygl et. app. run()

When animations are loaded with pygl et.resour ce (see Application resour ces) the frames are automatically
packed into atexture bin.

Thisexample program islocated in examples/programming_guide/animation.py, along with asample GIF
animation file.

Buffer images

pyglet provides a basic representation of the framebuffer as components of the Abstractl mage hierarchy.
At this stage this representation is based off OpenGL 1.1, and there is no support for newer features such
as framebuffer objects. Of course, this doesn't prevent you using framebuffer objectsin your programs --
pyglet.gl provides this functionality -- just that they are not represented as Abstractlmage types.

Abstractimage

T

Bufferimage

ColorBufferimage DepthBufferlmage BufferimageMask

The Bufferlmage hierarchy.
A framebuffer consists of
» One or more colour buffers, represented by ColorBufferlmage
» An optional depth buffer, represented by DepthBufferlmage
» An optional stencil buffer, with each bit represented by BufferlmageMask
» Any number of auxilliary buffers, also represented by ColorBufferlmage

Y ou cannot create the buffer images directly; instead you must obtain instances via the BufferManager.
Use get_buffer_manager to get this singleton:

buf fers = i mage. get _buffer_manager ()

Only the back-left color buffer can be obtained (i.e., the front buffer is inaccessible, and stereo contexts
are not supported by the buffer manager):

color _buffer = buffers.get_col or_buffer()

72

Images

This buffer can be treated like any other image. For example, you could copy it to a texture, obtain its
pixel data, saveit to afile, and so on. Using the texture attribute is particularly useful, asit allows you to
perform multipass rendering effects without needing a render-to-texture extension.

The depth buffer can be obtained similarly:
depth_buffer = buffers.get depth_buffer()

When a depth buffer is converted to atexture, the class used will be a DepthTexture, suitable for use with
shadow map techniques.

The auxilliary buffers and stencil bits are obtained by requesting one, which will then be marked as "in-
use". This permits multiple libraries and your application to work together without clashes in stencil bits
or auxilliary buffer names. For example, to obtain a free stencil bit:

mask = buffers. get_buffer_mask()

The buffer manager maintains aweak reference to the buffer mask, so that when you release all references
toit, it will be returned to the pool of available masks.

Similarly, afree auxilliary buffer is obtained:
aux_buffer = buffers. get_aux_buffer()

When using the stencil or auxilliary buffers, make sure you explicitly request these when creating the
window. See OpenGL configuration options for details.

Displaying images

Images should be drawn into awindow in the window's on_draw event handler. Usually a"sprite" should
be created for each appearance of the image on-screen. Images can aso be drawn directly without creating
asprite.

Sprites

A spriteis an instance of an image displayed in the window. Multiple sprites can share the same image;
for example, hundreds of bullet sprites might share the same bullet image.

A spriteis constructed given an image or animation, and drawn with the Sprite.draw method:
sprite = pyglet.sprite. Sprite(inmage)

@ ndow. event

def on_draw():
wi ndow. cl ear ()
sprite.draw)

Sprites have properties for setting the position, rotation, scale, opacity, color tint and visibility of the
displayed image. Sprites automatically handle displaying the most up-to-date frame of an animation. The
following example uses a scheduled function to gradually move the sprite across the screen:

def update(dt):
Move 10 pi xels per second
sprite.x +=dt * 10

Call update 60 tinmes a second

73

Images

pygl et. cl ock. schedul e_i nterval (update, 1/60.)

If you need to draw many sprites, use a Batch to draw them all at once. This is far more efficient than
calling draw on each of them in aloop:

batch = pygl et. graphi cs. Batch()

sprites = [pyglet.sprite. Sprite(inage, batch=batch),
pygl et.sprite. Sprite(image, batch=batch),
#.o..]

@ ndow. event

def on_draw():
wi ndow. cl ear ()
bat ch. draw()

When sprites are collected into a batch, no guarantee is made about the order in which they will be drawn.
If you need to ensure some sprites are drawn before others (for example, landscape tiles might be drawn
before character sprites, which might be drawn before some particle effect sprites), use two or more
OrderedGroup objects to specify the draw order:

batch = pygl et. graphics. Bat ch()
background = pygl et. graphi cs. Order edG oup(0)
foreground = pygl et. graphi cs. Order edG oup(1)

sprites = [pyglet.sprite. Sprite(inmge, batch=batch, group=background),
pygl et.sprite. Sprite(imge, batch=batch, group=background),
pygl et.sprite. Sprite(imge, batch=batch, group=foreground),
pygl et.sprite. Sprite(imge, batch=batch, group=foreground),
#...]

@ ndow. event

def on_draw():
wi ndow. cl ear ()
bat ch. draw()

See the Graphics section for more details on batch and group rendering.

For best performance, try to collect al batch images into as few textures as possible; for example, by
loading images with pyglet.resource.image (see Application resources) or with Texture bins and atlases).

Simple image blitting
A simple but less efficient way to draw an image directly into awindow is with the blit method:

@\ ndow. event
def on_draw):
wi ndow. cl ear ()
i mage. blit(x, y)

The x and y coordinates locate where to draw the anchor point of the image. For example, to center the
imageat (X, Y):

kitten.width // 2
kitten.height // 2

kitten.anchor _x
kitten.anchor _y

74

Images

Kitten.blit(x, y)

You can also specify an optional z component to the blit method. This has no effect unless you have
changed the default projection or enabled depth testing. In the following example, the second image is
drawn behind the first, even though it is drawn after it:

frompyglet.gl inport *
gl Enabl e(G._DEPTH_TEST)

kitten.blit(x, y, 0)
kitten.blit(x, y, -0.5)

The default pyglet projection has adepth range of (-1, 1) -- images drawn with az value outside thisrange
will not be visible, regardless of whether depth testing is enabled or not.

Images with an alphachannel can be blended with the existing framebuffer. To do thisyou need to supply
OpenGL with ablend eguation. The following code fragment implements the most common form of alpha
blending, however other techniques are also possible:

frompyglet.gl inport *
gl Enabl e(G._BLEND)
gl Bl endFunc(GL_SRC_ALPHA, G_L_ONE_M NUS_SRC_ALPHA)

Y ou would only need to call the code above once during your program, before you draw any images (this
is not necessary when using only sprites).

OpenGL imaging

This section assumes you are familiar with texture mapping in OpenGL (for example, chapter 9 of the
OpenGL Programming Guide [http://opengl.org/documentation/red_book/]).

To create atexture from any Abstractimage, call get_texture:

kitten = inage.load('kitten.jpg')
texture = kitten.get _texture()

Textures are automatically created and used by ImageData when blitted. It isuseful to usetexturesdirectly
when aiming for high performance or 3D applications.

The Texture class represents any texture object. The target attribute gives the texture target (for example,
GL_TEXTURE_2D) and id the texture name. For example, to bind atexture:

gl Bi ndTexture(texture.target, texture.id)

Texture dimensions

Implementations of OpenGL prior to 2.0 requiretexturesto have dimensionsthat are powersof two (i.e., 1,
2,4, 8,16, ...). Because of thisrestriction, pyglet will always creste textures of these dimensions (there are
several non-conformant post-2.0 implementations). This could have unexpected results for a user blitting
atexture loaded from afile of non-standard dimensions. To remedy this, pyglet returns a TextureRegion
of the larger texture corresponding to just the part of the texture covered by the original image.

A TextureRegion has an owner attribute that references the larger texture. The following session
demonstrates this:

>>> rgba = inage.load('tests/inagel/rgba.png')

75

http://opengl.org/documentation/red_book/
http://opengl.org/documentation/red_book/

Images

>>> rgba

<l mageDat a 235x257> # The image i s 235x257

>>> rgba. get _texture()

<Text ur eRegi on 235x257> # The returned texture is a region

>>> rgba. get _texture().owner

<Texture 256x512> # The owni ng texture has power-2 di mensions
>>>

A TextureRegion definesatex_coordsattribute that givesthe texture coordinatesto use for aquad mapping
the whole image. tex_coords is a 4-tuple of 3-tuple of floats; i.e., each texture coordinate is given in 3
dimensions. The following code can be used to render a quad for a texture region:

texture = kitten.get_texture()

t = texture.tex_coords

w, h = texture.wi dth, texture.height
array = (G.float * 32)(

tforro}, troyrfiy, tforrz), 1.,
X, Y, z, 1.,
tfijroy, trapray, tfajre), 1.,
X + w, Yy, z, 1.,
tf2]roy, tr2priy, tf2irz], 1.,
X + W, y + h, z, 1.,
t{3proy, tr31[1], tf3jrz], 1.,
X, y + h, z, 1.)

gl Pushd i ent Attri b(GL_CLI ENT_VERTEX_ ARRAY_BI T)
gl I nterl eavedArrays(G._T4F _VAF, 0, array)

gl DrawAr rays(G._QUADS, 0, 4)

gl PopClientAttrib()

The Texture.blit method does this.

Usethe Text ur e. cr eat e method to create either atexture region from alarger power-2 sized texture,
or atexture with the exact dimensionsusing the GL_t ext ur e_r ect angl e_ARB extension.

Texture internal format

pyglet automatically selectsan internal format for the texture based on the source image's format attribute.
The following table describes how it is selected.

Format Internal format

Any format with 3 components GL_RGB

Any format with 2 components GL_LUM NANCE_ALPHA
"A GL_ALPHA

"Lt GL_LUM NANCE

" GL_I NTENSI TY

Any other format GL_RGBA

Note that this table does not imply any mapping between format components and their OpenGL
counterparts. For example, an image with format " RG' will use G._LUM NANCE_ALPHA asitsinternal
format; the luminance channel will be averaged from the red and green components, and the al pha channel
will be empty (maximal).

76

Images

Usethe Text ur e. cr eat e class method to create a texture with a specific internal format.
Saving an image

Any image can be saved using the save method:

kitten.save('kitten.png')

or, specifying afile-like object:

kitten_stream = open('kitten.png' , 'wbh')
kitten.save(' kitten.png', file=kitten_stream

The following example shows how to grab a screenshot of your application window:
pygl et .i mage. get _buffer_manager().get _col or _buffer().save('screenshot. png')

Note that images can only be saved in the PNG format unless PIL isinstalled.

7

Sound and video

pyglet can play many audio and video formats. Audio is played back with either OpenAL, DirectSound
or ALSA, permitting hardware-accelerated mixing and surround-sound 3D positioning. Video is played
into OpenGL textures, and so can be easily be manipulated in real-time by applications and incorporated
into 3D environments.

Decoding of compressed audio and video is provided by AVbin [http://code.google.com/p/avhin], an
optional component available for Linux, Windows and Mac OS X. AVbin is installed alongside pyglet
by default if the Windows or Mac OS X installation is used. If pyglet was installed from source, AVbin
can beinstalled separately.

If AVbin is not present, pyglet will fall back to reading uncompressed WAYV files only. This may be
sufficient for many applications that require only a small nhumber of short sounds, in which case those
applications need not distribute AVhin.

Audio drivers

pyglet can use OpenAL, DirectSound or ALSA to play back audio. Only one of these drivers can be used
in an application, and this must be selected before the pyglet.media module isloaded. The availabledrivers
depend on your operating system:

Windows Mac OS X Linux
OpenAL 1 OpenAL OpenAL 1
DirectSound

ALSA

11OpenAL is not installed by default on Windows, nor in many Linux distributions. It can be downloaded
separately from your audio device manufacturer or openal.org [http://www.openal .org/downl oads.html]

The audio driver can be set through the audi o key of the pyglet.options dictionary. For example:
pygl et.options['audio'] = ('openal', 'silent"')

Thistells pyglet to use the OpenAL driver if it isavailable, and to ignore all audio output if it isnot. The
audi o option can be alist of any of these strings, giving the preference order for each driver:

String Audiodriver
openal OpenAL

di rect sound DirectSound

al sa ALSA

sil ent No audio output

You must set the audi o option before importing pyglet.media. You can aternatively set it through an
environment variable; see Environment settings.

The following sections describe the requirements and limitations of each audio driver.

DirectSound

DirectSound is available only on Windows, and isinstalled by default on Windows XP and later. pyglet
uses only DirectX 7 features. On Windows Vista DirectSound does not support hardware audio mixing
or surround sound.

78

http://code.google.com/p/avbin
http://code.google.com/p/avbin
http://www.openal.org/downloads.html
http://www.openal.org/downloads.html

Sound and video

OpenAL

OpenAL isincluded with Mac OS X. Windows users can download ageneric driver from openal.org [http://
www.openal .org/downloads.html], or from their sound device's manufacturer. Linux users can use the
reference implementation also provided by Creative. For example, Ubuntu userscanapt - get openal .
ALUT is not required. pyglet makes use of OpenAL 1.1 features if available, but will also work with
OpenAL 1.0.

Due to a long-standing bug in the reference implementation of OpenAL, stereo audio is downmixed to
mono on Linux. This does not affect Windows or Mac OS X users.

ALSA

ALSA is the standard Linux audio implementation, and is installed by default with many distributions.
Due to limitations in ALSA all audio sources will play back at full volume and without any surround
sound positioning.

Linux Issues

Linux users have the option of choosing between OpenAL and ALSA for audio output. Unfortunately
both implementations have severe limitations or implementation bugsthat are outside the scope of pyglet's
control.

If your application can manage without stereo playback, or needs control over individual audio volumes,
you should use the OpenAL driver (assuming your users haveit installed).

If your application needs stereo playback, or does not require spatialised sound, consider using the ALSA
driver in preference to the OpenAL driver. You can do thiswith:

pygl et.options['audio'] = ('"alsa', 'openal', 'silent')

Supported media types

If AVbinisnot installed, only uncompressed RIFF/WAYV files encoded with linear PCM can be read.

With AVbin, many common and less-common formats are supported. Due to the large number of
combinations of audio and video codecs, options, and container formats, it isdifficult to provideacomplete
yet useful list. Some of the supported audio formats are:

« AU

° MP2

e MP3

* OGG/Vorbis

« WAV

« WMA

Some of the supported video formats are:

* AVI

79

http://www.openal.org/downloads.html
http://www.openal.org/downloads.html
http://www.openal.org/downloads.html

Sound and video

* DivX

* H.263

H.264

MPEG

MPEG-2

OGG/Theora
e Xvid
¢« WMV

For a complete list, see the AVbin sources. Otherwise, it is probably simpler to simply try playing back
your target filewith the medi a_pl ayer . py example.

New versions of AVbin as they are released may support additional formats, or fix errors in the current
implementation. AVhin is completely future- and backward-compatible, so no change to pyglet is needed
to use anewer version of AVbin -- just install it in place of the old version.

Loading media

Audio and video files are loaded in the same way, using the pyglet.media.load function, providing a
filename:

source = pyglet. nedia.l oad(' expl osi on. wav')

If the media file is bundled with the application, consider using the resource module (see Application
resources).

The result of loading a media file is a Source object. This object provides useful information about the
type of mediaencoded in thefile, and serves as an opaque object used for playing back the file (described
in the next section).

The load function will raise a MediaException if the format is unknown. IOError may aso be raised if
thefile could not be read from disk. Future versions of pyglet will also support reading from arbitrary file-
like objects, however avalid filename must currently be given.

Thelength of the mediafileis given by the duration property, which returnsthe media'slength in seconds.

Audio metadata is provided in the source's audio_format attribute, which is None for silent videos. This
metadata is not generally useful to applications. See the AudioFormat class documentation for details.

Video metadata is provided in the source's video_format attribute, which is None for audio files. It is
recommended that this attribute is checked before attempting play back avideo file -- if amoviefile has
areadable audio track but unknown video format it will appear as an audio file.

Y ou can use the video metadata, described in a VideoFormat object, to set up display of the video before
beginning playback. The attributes are as follows:

Attribute Description

wi dt h, hei ght Width and height of the
video image, in pixels.

80

Sound and video

Attribute Description
sanmpl e_aspect The aspect ratio of each
video pixel.

You must take care to apply the sample aspect ratio to the video image size for display purposes. The
following code determines the display size for a given video format:

def get video_size(wi dth, height, sanple_aspect):
if sanple_aspect > 1.:
return width * sanpl e_aspect, hei ght
elif sanple_aspect < 1.:
return width, height / sanpl e_aspect
el se:
return width, height

Mediafiles are not normally read entirely from disk; instead, they are streamed into the decoder, and then
into the audio buffers and video memory only when needed. This reduces the startup time of loading afile
and reduces the memory requirements of the application.

However, there are times when it is desirable to completely decode an audio file in memory first. For
example, a sound that will be played many times (such as a bullet or explosion) should only be decoded
once. You can instruct pyglet to completely decode an audio file into memory at load time:

expl osi on = pygl et. medi a. | oad(' expl osi on. wav', stream ng=Fal se)

The resulting source is an instance of StaticSource, which provides the same interface as a streaming
source. You can also construct a StaticSource directly from an already-loaded Source;

expl osi on = pygl et. nmedi a. St ati cSour ce(pygl et. medi a. | oad(' expl osi on. wav'

Simple audio playback

Many applications, especially games, need to play sounds in their entirety without needing to keep track
of them. For example, a sound needs to be played when the player's space ship explodes, but this sound
never needs to have its volume adjusted, or be rewound, or interrupted.

pyglet provides a simple interface for this kind of use-case. Call the play method of any Source to play
it immediately and completely:

expl osi on = pygl et. medi a. | oad(' expl osi on. wav', stream ng=Fal se)
expl osi on. pl ay()

You can call play on any Source, not just SaticSource.

Thereturn value of Source.play isaManagedPlayer, which can either be discarded, or retained to maintain
control over the sound's playback.

Controlling playback

Y ou can implement many functions common to amedia player using the Player class. Use of thisclassis
also necessary for video playback. There are no parameters to its construction:

pl ayer = pygl et. medi a. Pl ayer ()

81

Sound and video

A player will play any source that is "queued" on it. Any number of sources can be queued on a single
player, but once queued, asource can never be dequeued (until it isremoved automatically once complete).
The main use of this queuing mechanism isto facilitate "gapless" transitions between playback of media
files.

A StreamingSource can only ever be queued on one player, and only once on that player. StaticSource
objects can be queued any number of times on any number of players. Recall that a SaticSource can be
created by passing st r eami ng=Fal se to theload method.

In the following example, two sounds are queued onto a player:

pl ayer. queue(sourcel)
pl ayer. queue(source?2)

Playback begins with the player's play method is called:
pl ayer. pl ay()

Standard controls for controlling playback are provided by these methods:

M ethod Description

play Begin or resume playback
of the current source.

pause Pause playback of the
current source.

next Dequeue the current source
and move to the next one
immediately.

seek Seek to a specific time

within the current source.

Note that there is no stop method. If you do not need to resume playback, simply pause playback and
discard the player and source objects. Using the next method does not guarantee gapless playback.

There are several properties that describe the player's current state:

Property Description

time The current playback
position within the current
source, in seconds. This is
read-only (but see the seek
method).

playing True if the player is
currently playing, False if
there are no sources queued
or the player is paused. This
is read-only (but see the
pause and play methods).

source A reference to the current
source being played. Thisis
read-only (but see the queue
method).

82

Sound and video

Property Description

volume The audio level, expressed
as a float from 0 (mute) to
1 (normal volume). Thiscan
be set at any time.

When a player reaches the end of the current source, by default it will move immediately to the next
gueued source. If there are no more sources, playback stops until another is queued. There are several other
possible behaviours, specified by setting the eos_action attribute on the player:

eos_action Description

EOS NEXT The default action:
playback continues at the
next source.

EOS PAUSE Playback pauses a the

end of the source, which
remains the current source
for this player.

EOS LOOP Playback continues
immediately at the
beginning of the current
source.

EOS STOP Valid only for
ManagedPlayer, for which
it is default: the player is
discarded when the current
source finishes.

Y ou can change a player's eos_action at any time, but be aware that unless sufficient timeis given for the
future data to be decoded and buffered there may be a stutter or gap in playback. If eos actionis set well
in advance of the end of the source (say, several seconds), there will be no disruption.

Incorporating video

When a Player is playing back a source with video, use the get_texture method to obtain the video frame
image. This can be used to display the current video image syncronised with the audio track, for example:

@ ndow. event
def on_draw):
pl ayer.get texture().blit(0, 0)

The texture is an instance of pyglet.image. Texture, with an internal format of either GL_ TEXTURE_2D
or GL_TEXTURE_RECTANGLE_ARB. While the texture will typically be created only once and
subsequentally updated each frame, you should make no such assumption in your application -- future
versions of pyglet may use multiple texture objects.

Positional audio

pyglet uses OpenAL for audio playback, which includes many features for positioning sound within a3D
space. Thisis particularly effective with a surround-sound setup, but is also applicable to stereo systems.

83

Sound and video

A Player in pyglet has an associated position in 3D space -- that is, it is equivalent to an OpenAL "source”.
The properties for setting these parameters are described in more detail in the APl documentation; see for
example Player.position and Player .pitch.

The OpenAL "listener" object is provided by the pyglet.media.listener singleton, an instance of
Listener. This provides similar properties such as Listener.position, Listener.forward_orientation and
Listener.up_orientation that describe the position of the user in 3D space.

Note that only mono sounds can be positioned. Stereo sounds will play back as normal, and only their
volume and pitch properties will affect the sound.

Application resources

Previous sectionsin this guide have described how to load images, mediaand text documents using pygl et.
Applications also usually have the need to load other datafiles: for example, level descriptionsin agame,
internationalised strings, and so on.

Programmers are often tempted to load, for example, an image required by their application with:
i mge = pyglet.inage.load('!l ogo.png')

This code assumes | 0go. png isin the current working directory. Unfortunately the working directory
is not necessarily the same as the directory containing the application script files.

» Applications started from the command line can start from an arbitrary working directory.

» Applicationsbundled into an egg, Mac OS X package or Windows executable may have their resources
insideazZIPfile.

» The application might need to change the working directory in order to work with the user'sfiles.

A common workaround for this is to construct a path relative to the script file instead of the working
directory:

i nport os

script_dir = os.path.dirname(__file_)
path = os.path.join(script_dir, 'logo.png)
i mge = pygl et. i mage. | oad(pat h)

This, besides being tedious to write, still does not work for resources within ZIP files, and can be
troublesome in projects that span multiple packages.

The pyglet.resource modul e solves this problem elegantly:
i mge = pygl et.resource.imge('logo.png')

The following sections describe exactly how the resources are located, and how the behaviour can be
customised.

Loading resources

Use the pyglet.resource module when files shipped with the application need to be loaded. For example,
instead of writing:

data file open('file.txt")
use:
data _file = pyglet.resource.file('file.txt")

There are also convenience functions for loading media files for pyglet. The following table shows the
equivalent resource functions for the standard file functions.

File function Resour ce function |Type

open pydlet.resourcefile |File-like object

85

Application resources

File function Resource function |Type
pyglet.image.load pyglet.resource.imagelexture or
TextureRegion
pyglet.image.load pyglet.resource.texturéexture
pyglet.image.load_animation pyglet.resour ce.ani mahigmation
pyglet.media.load pyglet.resour ce.medigour ce

pyglet.resource.text | UnformattedDocument
pyglet.text.loadmimetype=t ext / pl ai n

pyglet.resour ce.html | FormattedDocument
pyglet.text.loadmimetype=t ext/ ht m

pygdlet.resour ce.attri biedmattedDocument
pyglet.text.loadmimetype =t ext / vnd. pygl et -at tri but ¢d

pyglet.font.add_file pyglet.resource.add fidoine

pyglet.resource.texture is for loading stand-alone textures, and would be required when using the texture
for a 3D model.

pyglet.resource.image is optimised for loading sprite-like images that can have their texture coordinates
adjusted. The resource module attempts to pack small images into larger textures for efficient rendering
(which iswhy the return type of this function can be TextureRegion).

Resource locations

Some resource files reference other files by name. For example, an HTML document can contain <i ng
src="i mage. png" /> elements. In this case your application needs to locate i mage. png relative
tothe originad HTML file.

Use pyglet.resource.location to get a Location object describing the location of an application resource.
This location might be a file system directory or a directory within a ZIP file. The Location object can
directly open files by name, so your application does not need to distinguish between these cases.

In the following example, at hunbnai | s. t xt file is assumed to contain a list of image filenames
(one per line), which are then loaded assuming the image files are located in the same directory as the
t humbnai | s. t xt file:

thunbnails _file = pyglet.resource.file('thunbnails.txt', "rt')
t hunbnai | s_| ocati on = pyglet.resource.location('thunbnails.txt")

for line in thunmbnails file:
filenane = line.strip()
image_file = thunbnails_| ocati on. open(fil enane)
i mge = pyglet.imge.load(filename, file=imge file)
Do sonmething with “inmage ...

This code correctly ignores other images with the same filename that might appear elsewhere on the
resource path.

Specifying the resource path

By default, only the script home directory is searched (the directory containingthe _ mai n__ module).
You can set pyglet.resource.path to a list of locations to search in order. This list is indexed, so after
modifying it you will need to call pyglet.resource.reindex.

86

Application resources

Each item in the path list is either a path relative to the script home, or the name of a Python module
preceded with an ampersand (@. For example, if you would like to package all your resourcesin ar es
directory:

pygl et.resource.path = ['res']
pygl et.resource. rei ndex()

Items on the path are not searched recursively, so if your resource directory itself has subdirectories, these
need to be specified explicitly:

pygl et.resource.path = ['res', 'res/images', 'res/sounds', 'res/fonts']
pygl et. resource. rei ndex()

The entries in the resource path aways use forward slash characters as path separators even when the
operating systems using a different character.

Specifying module names makes it easy to group code with its resources. The following example usesthe
directory containing the hypothetical gui . ski ns. def aul t for resources:

pygl et.resource.path = [' @ui .skins.default', '."]
pygl et. resource. rei ndex()

Multiple loaders

A Loader encapsulates a complete resource path and cache. This lets your application cleanly separate
resource loading of different modules. Loaders are constructed for a given search path, and exposes the
same methods as the global pyglet.resource module functions.

For example, if amodule needs to load its own graphics but does not want to interfere with the rest of the
application's resource loading, it would create its own Loader with alocal search path:

| oader = pyglet.resource.Loader(['@ + __nane__])
i mge = | oader.inage('logo.png')

Thisis particularly suitable for "plugin® modules.

You can also use a Loader instance to load a set of resources relative to some user-specified document
directory. The following example creates aloader for a directory specified on the command line;

i mport sys
horme = sys. argv[1]
| oader = pygl et.resource. Loader (scri pt_hone=[hone])

This is the only way that absolute directories and resources not bundled with an application should be
used with pyglet.resource.

Saving user preferences

Because Python applications can be distributed in several ways, including within ZIP files, it is usually
not feasible to save user preferences, high scorelists, and so on within the application directory (or worse,
the working directory).

The pyglet.resource.get_settings path function returns a directory suitable for writing arbitrary user-
centric data. The directory used follows the operating system's convention:;

87

Application resources

e ~/ . ApplicationName/ on Linux
e $HOVE\ Appl i cation Settings\Applicati onNarme onWindows
* ~/Library/ Application Support/Applicati onName on Mac OS X

Thereturned directory nameisnot guaranteed to exist -- it isthe application'sresponsibility to createit. The
following example opens a high score list file for a game called " SuperGame" into the settings directory:

i mport os

dir = pyglet.resource. get_settings_path(' Super Gane')
if not os.path.exists(dir):
os. makedi rs(dir)
filenane = os.path.join(dir, 'highscores.txt')
file = open(filename, 'Wm")

88

Debugging tools

pyglet includes a number of debug paths that can be enabled during or before application startup. These
were primarily developed to aid in debugging pyglet itself, however some of them may also prove useful
for understanding and debugging pyglet applications.

Each debug option is akey in the pyglet.options dictionary. Options can be set directly on the dictionary
before any other modules are imported:

i mport pygl et
pygl et. options[' debug_gl'] = Fal se

They can a so be set with environment variables before pyglet isimported. The corresponding environment
variable for each option is the string PYGLET _ prefixed to the uppercase option key. For example, the
environment variable for debug_gl is PYGLET_DEBUG Q.. Boolean options are set or unset with 1
and O values.

A summary of the debug environment variables appears in the table below.

Option Environment Type

variable
debug font PYGLET _DEBUG F@gol
debug_ gl PYGLET_DEBUG bool
debug gl trace PYGLET _DEBUG (JbodRACE
debug gl trace_args PYGLET _DEBUG JbobRACE ARGS
debug_graphi cs_bat ch PYGLET _DEBUG G®aBHI CS_BATCH
debug_lib PYGLET _DEBUG L |80l
debug_nedi a PYGLET DEBUG _MHiDOA
debug trace PYGLET _DEBUG TRA&GE
debug trace_args PYGLET _DEBUG TR&CE ARGS
debug trace_depth PYGLET _DEBUG TRACE DEPTH
debug_wi n32 PYGLET_DEBUG_ WH¥8P
debug_x11 PYGLET_DEBUG_Xfibol
graphi cs_vbo PYGLET _GRAPHI CHodBO

The debug_rnedi a and debug_f ont

options are used to debug the pygl et. nedi a and

pygl et . f ont modules, respectively. Their behaviour is platform-dependent and useful only for pyglet
developers.

The remaining debug options are detailed below.

Debugging OpenGL

The gr aphi cs_vbo option enables the use of vertex buffer objects in pyglet.graphics (instead, only
vertex arrays). This is useful when debugging the gr aphi ¢cs module as well as isolating code for
determining if avideo driver isfaulty.

89

Debugging tools

Thedebug_gr aphi cs_bat ch option causes all Batch objectsto dump their rendering tree to standard
output before drawing, after any change (so two drawings of the same tree will only dump once). Thisis
useful to debug applications making use of Group and Batch rendering.

Error checking

The debug_gl option intercepts most OpenGL calls and calls gl Get Er r or afterwards (it only does
thiswhere such a call would belegal). If an error isreported, an exception is raised immediately.

This option is enabled by default unless the - O flag (optimisation) is given to Python, or the script is
running from within a py2exe or py2app package.

Tracing

Thedebug_ gl _t race option causes all OpenGL functions called to be dumped to standard out. When
combined with debug_gl trace_ar gs, the arguments given to each function are also printed (they
are abbreviated if necessary to avoid dumping large amounts of buffer data).

Tracing execution

The debug_t r ace option enables Python-wide function tracing. This causes every function call to be
printed to standard out. Due to the large number of function calls required just to initialise pyglet, it is
recommended to redirect standard output to a file when using this option.

Thedebug_t race_ar gs option additionally prints the arguments to each function call.

When debug_t race_dept h is greater than 1 the caller(s) of each function (and their arguments, if
debug trace_args is set) are aso printed. Each caller is indented beneath the callee. The default
depth is 1, specifying that no callers are printed.

Platform-specific debugging

The debug_| i b option causes the path of each loaded library to be printed to standard out. This is
performed by the undocumented pygl et . | i b module, which on Linux and Mac OS X must sometimes
follow complex procedures to find the correct library. On Windows not all libraries are loaded via this
module, so they will not be printed (however, loading Windows DLLs is sufficiently simple that thereis
little need for thisinformation).

Linux

X11 errors are caught by pyglet and suppressed, as there are plenty of X serversin the wild that generate
errors that can be safely ignored. The debug_x11 option causes these errors to be dumped to standard
out, along with a traceback of the Python stack (this may or may not correspond to the error, depending
on whether or not it was reported asynchronously).

Windows

The debug wi n32 option causes al library cals into user32.dll, kernel 32.dll and
gdi 32. dl | to be intercepted. Before each library call Set Last Err or (0) iscalled, and afterwards
Get Last Error () iscaled. Any errors discovered are written to a file named debug_wi n32. | og.
Note that an error isonly valid if the function called returned an error code, but the interception function
does not check this.

90

Appendix: Migrating to pyglet 1.1

pyglet 1.1 introduces new features for rendering high performance graphics and text, is more convenient
to use, and integrates better with the operating system. Some of the existing interfaces have also been
redesigned slightly to conform with standard Python practice or to fix design flaws.

Compatibility and deprecation

pyglet 1.1 is backward compatible with pyglet 1.0. Any application that uses only public and documented
methods of pyglet 1.0 will continue to work unchanged in pyglet 1.1. If you encounter an issue where this
is not the case, please consider it abug in pyglet and file an issue report.

Some methods have been marked deprecated in pyglet 1.1. These methods continueto work, but have been
superceded by newer methods that are either more efficient or have a better design. The API reference has
acomplete list of deprecated methods; the main changes are described in the next section.

 Continue to use deprecated methodsiif your application needs to work with pyglet 1.0 aswell as pyglet
11.

* New applications should not use deprecated methods.

Deprecated methods will continue to be supported in all minor revisions of pyglet 1.x. A pyglet 2.0 release
will no longer support these methods.

Deprecated methods

New

The following minor changes have been made for design or efficiency reasons. Applications which no
longer need to support pyglet 1.0 should make the appropriate changes to ensure the deprecated methods
are not called.

The di spat ch_event s method on Player and the equivalent function on the pyglet.media module
should no longer be called. In pyglet 1.1, media objects schedule an update function on pyglet.clock at an
appropriate interval. New applications using media are required to call pyglet.clock.tick periodicaly.

The Abstractimage propertiest ext ur e, i mage_dat a, and so on have been replaced with equivalent
methodsget _t ext ur e, get _i mage_dat a, etc.

The ImageData properties data, format and pitch, which together were used to extract pixel datafrom an
image, have been replaced with asinglefunctionget _dat a. Theformat and pitch properties should now
be used only to determine the current format and pitch of the image.

Theget_current_context function has been replaced with aglobal variable, current_context, for efficiency.

features replacing standard practice

pyglet 1.1 introduces new featuresthat makeit easier to program with, so the standard practice as followed
in many of the pyglet example programs has changed.

Importing pyglet

In pyglet 1.0, it was necessary to explicitly import each submodule required by the application; for
example:

91

Appendix: Migrating to pyglet 1.1

from pyglet inmport font
from pyglet inmport inmage
from pyglet inmport w ndow

pyglet now lazily loads submodul es on demand, so an application can get away with importing just pyglet.
Thisis especialy handy for modules that are typically only used once in an application, and frees up the
namesf ont , i mage, wi ndowand so on for the application developer. For example:

wi ndow = pygl et.w ndow. W ndow()

Application event loop

Every application using pyglet 1.0 provides its own event loop, such as:

whil e not w ndow. has_exit:
dt = clock.tick()
updat e(dt)

wi ndow. di spat ch_event s()
wi ndow. cl ear ()

draw()
wi ndow. fli p()

Besides being somewhat repetitious to type, this type of event loop is difficult to extend with more
windows, and exausts all available system resources, even if the application is not doing anything.

The new pyglet.app module provides an application event loop that isless demanding of the CPU yet more
responsive to user events. A complete application that opens an empty window can be written with:

wi ndow = pygl et.w ndow. W ndow()

@ ndow. event
def on_draw():
wi ndow. cl ear ()

pygl et. app. run()

Note the new on_draw event, which makesit easy to specify different drawing functionsfor each window.
The pyglet.app event loop takes care of dispatching events, ticking the clock, calling the draw function
and flipping the window buffer.

Update functions can be scheduled on the clock. To have an update function be called as often as possible,
use clock.schedule (this effectively degenerates into the older dispatch events practice of thrashing the
CPU):

def update(dt):
pass
cl ock. schedul e(updat e)

Usually applications can update at a less frequent interval. For example, a game that is designed to run
at 60Hz can use clock.schedule_interval:

def update(dt):
pass
cl ock. schedul e_i nterval (update, 1/60.0)

92

Appendix: Migrating to pyglet 1.1

This also removes the need for clock.set_fps limit.

Besides the advantages already listed, windows managed by the event loop will not block while being
resized or moved; and the menu bar on OS X can be interacted with without blocking the application.

It is highly recommended that all applications use the event loop. The loop can be extended if
you need to add additional hooks or integrate with another package. Applications continuing to use
Window.dispatch_events gain no advantage, but suffer from poorer response, increased CPU usage and
artifacts during window resizing and moving.

See The application event loop for more details.

Loading resources

New

L ocating resources such as images, sound and video files, data files and fonts is difficult to do correctly
across al platforms, considering the effects of a changing working directory and various distribution
packages such as setuptools, py2exe and py2app.

The new pyglet.resource modul e implements the correct logic for all these cases, making it simpleto load
resources that belong to a specific module or the application asawhole. A resource path can be set that is
indexed once, and can include filesystem directories, Python module paths and ZIP files.

For example, suppose your application ships with al ogo. png that needs to be loaded on startup. In
pyglet 1.0 you might have written:

i mport os.path
from pygl et inport inmage

script_dir = os.path.dirnane(__file_)

logo_filenanme = os.path.join(script_dir, 'logo.png')
| ogo = i mage. | oad(l ogo_fil enamne)

In pyglet 1.1, you can write:

| ogo = pygl et.resource.imge('l ogo.png')

And will actually work in more scenarios (such as within a setuptools egg file, py2exe and py2app).

The resource module efficiently packs multiple small images into larger textures, so there is less need
for artists to create sprite sheets themselves for efficient rendering. Images and textures are also cached
automatically.

See Application resources for more details.

graphics features

The pyglet.graphics module is a low-level abstraction of OpenGL vertex arrays and buffer objects. It
is intended for use by developers who are aready very familiar with OpenGL and are after the best
performance possible. pyglet uses this module internally to implement its new sprite module and the new
text rendering module. The Graphics chapter describes this module in detail.

The pyglet.sprite module provide afast, easy way to display 2D graphics on screen. Sprites can be moved,
rotated, scaled and made translucent. Using the batch features of the new graphics API, multiple sprites
can be drawn in one go very quickly. See Sprites for details.

93

Appendix: Migrating to pyglet 1.1

The pyglet.image.load_animation function can load animated GIF images. These are returned as an
Animation, which exposestheindividual image framesand timings. Animations can also be played directly
on asprite in place of an image. The Animations chapter describes how to use them.

The pyglet.image.atlas module packs multiple images into larger textures for efficient rendering. The
pyglet.resource module uses this module for small images automatically, but you can use it directly even
if you're not making use of pyglet.resource. See Texture bins and atlases for details.

Images now have anchor _x and anchor _y attributes, which specify a point from which the image
should be drawn. The sprite module also uses the anchor point as the center of rotation.

Textures have a get_transform method for retrieving a TextureRegion that refers to the same texture data
in video memory, but with optional horizontal or vertical flipping, or 90-degree rotation.

New text features

The pyglet.text module can render formatted text efficiently. A new class Label supercedes the old
pyglet.font. Text class (which is now actualy implemented in terms of Label). The "Hello, World"
application can now be written:

wi ndow = pygl et.w ndow. W ndow()
| abel = pyglet.text.Label ("Hello, world",
font _name='Ti mes New Roman',
font _size=36,
x=wi ndow. wi dt h/ /2, y=wi ndow. hei ght//2,
hal i gn="center', valign='center')

@ ndow. event

def on_draw():
wi ndow. cl ear ()
| abel . draw()

pygl et. app. run()
Y ou can a'so display multiple fonts and styles within one label, with HTMLLabel:
| abel = pygl et.text.HTM.Label (' Hel | o</ b>, world!")

More advanced uses of the new text module permit applications to efficiently display large, scrolling,
formatted documents (for example, HTML files with embedded images), and to alow the user to
interactively edit text asin aWY SIWY G text editor.

Other new features

EventDispatcher now has a remove_handlers method which provides finer control over the event stack
than pop_handlers.

The @vent decorator has been fixed so that it no longer overrides existing event handlers on the object,
which fixes the common problem of handling the on_resize event. For example, the following now works
without any surprises (in pyglet 1.0 this would override the default handler, which sets up a default,
necessary viewport and projection):

@ ndow. event
def on_resize(w dth, height):

94

Appendix: Migrating to pyglet 1.1

pass

A variant of clock.schedule _interval, clock.schedule interval _soft has been added. This is for functions
that need to be called periodically at agiven interval, but do not need to schedule the period immediately.
Soft interval scheduling is used by the pyglet.media module to distribute the work of decoding video and
audio data over time, rather than stalling the CPU periodically. Games could use soft interval scheduling
to spread the regular computational requirements of multiple agents out over time.

In pyglet 1.0, font.load attempted to match the font resolution (DPI) with the operating system'’s typical
behaviour. For example, on Linux and Mac OS X the default DPI wastypically set at 72, and on Windows
at 96. Whilethiswould be useful for writing aword processor, it adds aburden on the application devel oper
to ensure their fonts work at arbitrary resolutions. In pyglet 1.1 the default DPI is set at 96 across all
platforms. It can till be overridden explicitly by the application if desired.

Video sources in pyglet.media can now be stepped through frame-by-frame: individual image frames can
be extracted without needing to play back the video in realtime.

For a complete list of new features and bug fixes, see the CHANGELOG distributed with the source
distribution.

95

