
© Brain Products GmbH 1999 - 2004

Vision Analyzer

Macro Cookbook

Version 1.05

2

The content of this document is the intellectual property of Brain Products GmbH, and is

subject to change without specific notification. Brain Products GmbH does not grant warranty

or assume liability for the correctness of individual statements herein. Nor does Brain

Products GmbH enter into any obligation with regard to this document.

Any trademarks mentioned in this document are the protected property of their rightful

owners.

Vision Analyzer Macro Cookbook 3

Contents

1. Introduction ... 5

2. Creating a simple macro .. 6

3. Quick tour of Basic ... 7

3.1. Variables ... 7

3.2. Procedures and functions .. 8

3.3. Objects .. 8

3.4. User interaction ... 9

3.5. Comments ... 10

3.6. Control structures .. 10

3.7. Error handling .. 11

3.8. Optimizing the speed of macros .. 11

4. The Analyzer's object model .. 13

5. Data manipulation with macros – the basics .. 15

6. Practical examples .. 17

6.1. Automation .. 17

6.1.1. Compressing all history files .. 17

6.1.2. Printer batch run .. 17

6.1.3. Renaming a history node in all history files ... 17

6.1.4. Exporting graphics to Winword with a report ... 19

6.2. Data manipulation ... 21

6.2.1. Removing, setting and renaming markers ... 21

6.2.2. Generating new data ... 22

6.2.3. Reading in stimulator data from external files ... 24

6.2.4. Reading in channel positions from external files 26

6.2.5. Exporting frequency data to an ASCII file .. 29

6.3. Dynamic parameterization ... 31

7. Tips for advanced users ... 34

7.1. Declaring variables .. 34

7.2. User-defined dialog boxes ... 35

4

7.3. Functions / procedures .. 37

7.4. Suppression of dialogs in history templates .. 38

7.5. Debugging ... 39

Vision Analyzer Macro Cookbook 5

1. Introduction

This short macro cookbook is intended to help you start creating macros for the Vision

Analyzer without going too deeply into theory.

You can use macros in the Analyzer for (almost) anything. You can automate processing

steps, and implement your own procedures and algorithms for recalculating data. You can

also add or remove markers to or from data sets, import channel positions from all kinds of

files into EEG data sets, export data and markers in your own formats, create reports and

much more besides.

Although macros are written in the Basic programming language you do not have to be a

programmer to create them. As you will see in the "Practical examples" chapter later, quite

simple macros are capable of increasing functionality considerably.

The easiest way to create macros is to look at the examples, take the one that comes closest to

your problem and modify it.

The chapters that precede the examples are intended to put you in a position to manipulate the

existing macros easily.

You will find the macro examples in the Examples subfolder of the Vision folder. If you want

to use or modify an example, you should copy it to the Workfiles subfolder of the Vision

folder and then work with the copy.

6

2. Creating a simple macro

In this chapter we will create a simple macro which closes all open history files and the

associated windows, i.e. clears up the desktop. So that you can follow this example, and all

others, you should have installed a functional version of the Analyzer. There should also be

some history files in your current workspace.

Now proceed as follows.

Launch the Analyzer. Then select the Macro > New menu item. This opens a window titled

"Macro1 (macro)...".This window contains two lines – Sub Main and End Sub. These lines

enclose the actual macro, i.e. you place your code between these two lines. Type in the macro

as follows:

Sub Main

 for each hf in historyfiles

 hf.close

 next

End Sub

The editor will change upper/lower case automatically sometimes. Basically, no distinction is

drawn between upper and lowercase except when texts need to be compared.

Select the File > Save menu item and store your macro under the name Close All. Now press

the F5 key to execute the macro. Nothing should happen as long as you have not made any

typing mistake. Otherwise the program will take you to the line containing the typing mistake.

Now open some history files by pressing on the (+) character next to the book icons. Execute

the macro again. All history files will be closed as if by magic.

You can now close the macro window. To run the macro again, select it under Macro > Run.

As an alternative, you can make the macros appear as items on the macro menu bar. To do

this, select Macro > Options. Here you can select up to 10 macros. When you have

completed your choice and selected the Macro menu again, you will find your macro on the

menu. You can now call the selected macros via keyboard commands (Alt-M, 1, 2 , 3...). Note

that these macros must always be located in the current work folder. You define the current

work folder in the Analyzer under Configuration > Select Folder for Workfiles.

In the sections that follow, we will deal with the meaning of the lines that you just typed in.

Vision Analyzer Macro Cookbook 7

3. Quick tour of Basic

This chapter gives you a brief – and therefore incomplete – overview of some aspects of

macro creation with the Basic language. Use the online Help to find out more information.

You can do this while creating a macro by means of Help > Language Help.

If you find terms in the examples that you do not understand, you can also use context-

sensitive help. To do this, move the cursor to a term and then press the F1 key. The online

Help facility will then give you an explanation of the term if it is registered in the Help file.

That does not apply to Analyzer objects which are explained in the following chapter.

The Basic dialect that is used is compatible with Microsoft's Visual Basic so that you can

refer to Visual Basic documentation if you have any other questions.

3.1. Variables

Variables can be regarded more or less as small containers or holders in which certain data,

e.g. numbers or texts, can be stored so that it can be used in the macro again at any point.

Example:

i = 0

i = i + 1

In the first line, the value 0 was assigned to variable i. In the second line, i was incremented

by 1.

Variables can also be declared explicitly (dimensioned) in a macro, as shown in the following

example:

Dim f as Single

Here, we have a variable named f as a holder for single precision floating point numbers.

Declaration of a variable is optional. You can also use variables without declaring them.

Declaration is unimportant as long as macros are short but if your macros exceed 30 to 50

lines it is advisable to declare variables in order to keep track of the situation. Read the "Tips

for advanced users" chapter at the end of this book for more information on this subject.

If you want to store not just one value in a variable but several, then we refer to an array. The

following declaration generates an array with 20 single-precision floating point numbers. In

the second line, the second entry of this array is set to a value. In the third line, the value of

the second entry in the array is assigned to variable x.

Dim fArray(1 To 20) as Single

fArray(2) = 12

x = fArray(2)

If you need an array whose size can change while the macro is running, then you declare it as

follows:

Dim fArray() as Single

Redim fArray(1 to 20)

Here, the array named fArray was declared (dimensioned) and then redimensioned for twenty

entries.

8

Redim Preserve fArray(1 to 20)

The above statement also redimensions an array but preserves any existing content.

3.2. Procedures and functions

The Basic interpreter features a wide range of built-in functions and procedures that you can

use in your macros.

Functions perform operations and return a result. The sin function is an example. It returns the

sine of a number in radians, and is used as follows:

x = sin(0.3)

In this case, the sine of 0.3 was assigned to variable x.

Procedures also perform one or more operations but do not return any value. Example:

beep

The Beep procedure generates a short beep.

A complete description of all built-in functions and procedures of the Basic interpreter is

given in the online Help.

You can use your own procedures and functions in your macros. This may make large macros

easier to read. The "Tips for advanced users" chapter gives more information on this.

3.3. Objects

The term object is used a great deal so we will explain here what it means in this manual.

An object is a function unit that you can manipulate with a program. It has methods and

properties. In their form, methods correspond to functions or procedures. Properties can be

either simple variables or, in turn, objects.

The most important object in the Analyzer is called Application. It represents the Analyzer.

The following macro uses the Application object to terminate the program.

Sub Main

 Application.Quit

End Sub

Here, the Application object's Quit method was used to terminate the Analyzer.

The Application object is the Analyzer's default object. This means that it can also be omitted

from the macro code. The following macro is identical to the preceding one in terms of its

functioning:

Sub Main

 Quit

End Sub

In turn, the Application object has other objects, e.g. the HistoryExplorer object which

represents the History Explorer. HistoryExplorer has the Visible property which is set to 1

when the Explorer is visible and to 0 when it is invisible.

The line

 Application.HistoryExplorer.Visible = 0

Vision Analyzer Macro Cookbook 9

or

 HistoryExplorer.Visible = 0

make the History Explorer invisible.

You will learn more about the Analyzer's object model in the next chapter.

You can use variables that reference objects. In this case, you use the keyword Set in addition

to the assignment character (=) to assign the value. Example:

 set he = HistoryExplorer

 he.Visible = 0

Objects can contain default elements which do not have to be mentioned explicitly in the

macro code. In the following example, a reference to the first history file in the workspace is

assigned to the hf variable.

 set hf = HistoryFiles.Item(1)

Since Item is the default element of Application.HistoryFiles, the expression can also read as

follows:

 set hf = HistoryFiles(1)

A collection is a special type of object. These are objects which, in turn, contain multiple

objects of one type. The HistoryFiles object, which contains multiple objects of the

HistoryFile type is an example of this. Such collections can be recognized in the Analyzer,

and also in most other OLE Automation servers, in that they are written as an English plural.

For example, HistoryFiles contains objects of the HistoryFile type, HistoryNodes contains

objects of the HistoryNode type, etc. Elements of collections can be indexed in the same way

as arrays.

 Dim hf as HistoryFile

 set hf = HistoryFiles(1)

3.4. User interaction

While a macro is running, you can output messages to the user, or prompt for entry of

parameters.

The InputBox and MsgBox functions are available for input and output respectively. The

following macro receives a user input and outputs it again as a message.

Sub Main

 x = InputBox("Enter Text")

 MsgBox x

End Sub

The GetFilePath function is available to select files. Read the description in the online Help

for more details of this.

Finally, you can also design your own dialogs and use them in the macro. You can find out

more about this in the "Tips for advanced users" chapter as well as in the online Help.

10

3.5. Comments

You can insert comments in macros to make them clearer and easier to understand. Comments

begin with the ' character. The text after this character up to the end of the line is then ignored

by the Basic interpreter.

Example:

' This macro receives a user input and shows the result in a message box.

Sub Main

 x = InputBox("Enter Text") ' Get user input and store it in x.

 MsgBox x ' Show user input in a message box.

End Sub

You should not be sparing with comments. Otherwise it can happen, especially in larger

macros, that you lose track of the situation and no longer know what individual statements are

actually supposed to do.

3.6. Control structures

Control structures belong to every powerful macro language. They permit conditional

execution of code or repeat one or more operations several times on the basis of a condition.

The Basic interpreter uses the If ... then ... else ... end if -construct for conditional branching.

Example:

Sub Main

 Dim x as long

 x = InputBox("Enter a Number:")

 if x > 20 then

 MsgBox "X is greater than 20."

 else

 MsgBox "X is not greater than 20."

 end if

End Sub

If a number greater than 20 is input here, then the first message is output. Otherwise the

second message is output.

The else branch can be omitted. In this case, simply nothing happens if the specified number

is less than or equal to 20:

Sub Main

 Dim x as long

 x = InputBox("Enter a Number:")

 if x > 20 then

 MsgBox "X is greater than 20."

 end if

End Sub

Lines are indented to indicate levels in the macro code. This is not mandatory but, in large

macros, it makes the code much easier to read.

If one or more operations need to be repeated (loop) then the for ... next construct is a good

approach. Example:

 Dim fArray(1 to 20) as single

 for i = 1 to 20

 fArray(i) = 2

 next

All elements in the array named fArray are set to 2.

Vision Analyzer Macro Cookbook 11

Another construct for repetition deals specifically with collection objects – namely the

for each ...in .. next construct:

 Dim hf as HistoryFile

 for each hf in HistoryFiles

 hf.Close

 next

Here, all HistoryFile objects in the HistoryFiles collection are referenced by hf. Then the

history files are closed in the loop.

It is now time to point out a special characteristic of loops – endless loops. If you program a

macro as follows, then i is incremented internally and then decremented again in the loop. The

program does not leave the loop until i exceeds the value 1000, which never happens here.

Sub Main

 For i = 1 To 1000

 i = i - 1

 Next

End Sub

The macro will run forever. However, you can abort it by pressing the Ctrl-Break key

combination.

Please refer to the online Help for information on other control structures.

3.7. Error handling

An error may occur when a macro is executing. Let's assume your workspace contains 1000

history files and the macro contains a statement to open the 1001st file:

hf = HistoryFiles(1001)

hf.Open

An error message is output in the status bar and the macro is aborted. To give you the chance

of taking some action before the macro is stopped, there is the On Error statement. Example:

Sub Main

 On Error Goto CheckError

 hf = HistoryFiles(1001)

 hf.Open

 exit sub

CheckError:

 MsgBox "Could not open history file"

End Sub

If an error occurs here, the macro continues to execute at the CheckError label. Note the exit

sub statement before the CheckError label. It terminates the macro at this point, thus

preventing the code after the CheckError label from being executed if no error has occurred.

This construct does not offer many advantages for the problem given in the example above,

but it can be useful in certain situations.

Please refer to the online Help for more information on error handling routines.

3.8. Optimizing the speed of macros

Macros can be accelerated considerably by avoiding unnecessary object references. Cases

with acceleration up to a factor of 100 have occurred in practice.

12

The most important place in which optimization can take effect is inside a loop. Here, every

loss of time that is programmed is multiplied by the number of passes through the loop.

Below you see an example of a non-optimized loop. The underline character ("_") is used as

the last character of a line when a statement extends over multiple lines.

Sub Main

 Set nhn = New NewHistoryNode

 nhn.Create "New", ActiveNode

 For i = 1 To 100

 nhn.RemoveMarker 0, hn.Dataset.Markers(i).Position, 1, _

 ActiveNode.Dataset.Markers(i).Type, ActiveNode.Dataset.Markers(i).Description

 nhn.AddMarker 0, ActiveNode.Dataset.Markers(i).Position, 1, "Stimulus", _

 ActiveNode.Dataset.Markers(i).Description + "A"

 Next

 nhn.Finish

End Sub

Below, there is a macro with the same functionality which runs about 100 times faster and is

also easier to read. Note that the chain of objects ActiveNode.Dataset.Markers is only

referenced once outside the For ... Next loop.

Sub Main

 Set nhn = New NewHistoryNode

 nhn.Create "New", ActiveNode

 Set Mks = ActiveNode.Dataset.Markers ' Use variable as object reference.

 For i = 1 To 100

 Set mk = Mks(i)

 nhn.RemoveMarker 0, mk.Position, 1, mk.Type, mk.Description

 nhn.AddMarker 0, mk.Position, 1, "Stimulus", mk.Description + "A"

 Next

 nhn.Finish

End Sub

A simple rule of thumb for acceleration is:

Remove as many periods (".") as possible from the loop if these describe object

references.

Object references often make the creation of objects within the Analyzer complex. They are

continually deleted in the loop and recreated if they are not assigned once to a variable as in:

 Set Mks = ActiveNode.Dataset.Markers ' Use variable as object reference.

Such an approach can sometimes impair speed dramatically.

Some periods in the loop relate to properties which represent variables in the object, e.g.

mk.Position. Here, the anticipated gain in speed as a result of assignment to a variable is so

low that the disadvantages of less clarity prevail.

Vision Analyzer Macro Cookbook 13

4. The Analyzer's object model

Here we will run through the Analyzer's object model briefly. For details, please refer to the

OLE Automation Reference Manual which is part of the package.

The figure below shows the Analyzer's object hierarchy as a guide. The Application object is

at the very top of the hierarchy.

Fig. 4-1: The Analyzer's object hierarchy

Of the Application class, there is just one object which represents the program as a whole. It

is the default object which means that its methods and properties can be accessed directly, i.e.

HistoryFiles is equivalent to Application.HistoryFiles, for example.

The HistoryFiles object collection represents all history files in the current workspace. A

single history file is represented as HistoryFile.

14

Every history file contains a HistoryNodes collection which normally contains an object of

the HistoryNode type. As far as primary history files are concerned, that is the data node

named Raw Data. In turn, every object in the HistoryNode class contains a HistoryNodes

collection with references to derived data sets. You can navigate through an entire history file

with all its branches in this way.

The HistoryNode object also has another object. This is the Dataset object which contains a

collection of all markers in the data set (the Markers object) and a collection of channels (the

Channels object). Finally, every Channel object gives you access to every data point. Access

to the first data point of the first channel can therefore be described as follows:

 Dataset.Channels(1).DataPoint(1)

Since Channels is the default element of Dataset, and DataPoint is the default element of

Channels, the description can be shortened as follows:

 Dataset(1)(1)

We will deal with other aspects of HistoryNode, Dataset and Channel objects in the "Practical

examples" chapter.

The NewHistoryNode object stands somewhat apart from the other objects. It is used to create

new history nodes. It is shown separately in the object hierarchy because it is regenerated

when needed. Its use is described in detail in the next chapter.

Vision Analyzer Macro Cookbook 15

5. Data manipulation with macros – the basics

In this chapter, data manipulation means changing of the actual data as well as removal and

addition of markers, and changing of properties such as channel names or positions. In fact,

no physical change is made to the data. Instead, a newly derived data set is generated in the

way we are familiar with in transformations in the Analyzer. You can also delete this data set

in exactly the same way as other data sets. Here, too, there are no limits to your scope for

experimentation.

Before you use macros to manipulate data, however, you should check whether your problem

can be solved by one of the existing transformation modules.

To generate a new data set we require a NewHistoryNode object. The easiest way to generate

it is with the following line:

 Dim nhn as New NewHistoryNode

Basically, two procedures are responsible for creating and completing the node: Create and

Finish.

Channel names, markers and data can be set between these two procedures. If Create was

called successfully and the data was not inherited from the parent, a data set is created with

standard settings. This can now be manipulated. Finish completes the creation process.

The newly generated history nodes can also be used in history templates to a limited extent.

To do this, the new node must be generated as a child node of the predefined variable named

ActiveNode. This variable is always defined when the Basic interpreter is running. It is

defined as follows:

Dim ActiveNode As HistoryNode

The node represents the data window that is currently open. If no data window is open, this

node does not contain any data.

To generate a data set that can be used in a template, you should close all open data windows

apart from the window that is to act as the parent for the new child node. Then the code of the

Basic macro is executed. Note that execution of the macro is terminated automatically when

the NewHistoryNode.Finish() method is executed.

When the new node is created, the entire macro code is copied into it. Now you can drag the

node to another node just like any normal transformation in order to repeat the operation. The

node can also be included in a history template.

If you right-click the node to see the Operation Infos, then the code that generated the node is

also displayed.

Below you will see some sample code which simply renames the first channel as xxx but

otherwise leaves everything else unchanged. The new data is stored in the Basic Test node

under the currently open history node. This code is for demonstration purposes only here. If

you actually want to rename channels, you can do this more easily with the Edit Channels

transformation.

Sub Main

16

 Dim nhn as New NewHistoryNode

 nhn.Create "BasicTest", ActiveNode

 nhn.SetChannelName 1, "xxx"

 nhn.Finish

End Sub

As you see, it only takes minimal effort to create a new data set or history node.

We just generated a data set which takes all its data from its predecessor. In this case, the

macro only has very little work to do so it runs very fast. Furthermore, the new data set takes

up very little space because, in fact, only a reference to the data is stored.

If, on the other hand, you generate really new data, this is stored in the history file. We

therefore advise you to manipulate data only after averaging, if possible, because there is

considerably less data than with a raw EEG. This also has a positive effect on the speed

because the macro language is relatively slow. If you want to perform operations on raw data,

you should therefore check whether a transformation module can do this job (e.g. Formula

Evaluator). A mixed form of macros and transforms is also possible to a limited extent, as

described in the “Dynamic parameterization” section of the following chapter.

It is a different matter if you only want to set, delete or rename markers. Since markers are

stored internally in a table, a macro can act quite fast on raw EEGs, and the resultant data set

only requires very little space. The same applies to the changing of properties such as channel

names or positions.

The various types of new history nodes are explained in the "Practical examples" chapter.

Please refer to the "NewHistoryNode" section of the "Object classes" chapter in the OLE

Automation Reference Manual for the exact syntax that is required to create the nodes.

Vision Analyzer Macro Cookbook 17

6. Practical examples

6.1. Automation

6.1.1. Compressing all history files

If you experiment a great deal with your data, create nodes in history files and delete them

again, then this will normally give rise to fairly large gaps in the files. This may make the

history files unnecessarily large. The following macro runs through all history files in the

current workspace and compresses them, i.e. removes all gaps.

Compress All.vabs file:

' Compress all history files

Sub Main

 For each hf in HistoryFiles

 hf.Compress

 Next

End Sub

6.1.2. Printer batch run

The following macro searches for the Average data set in all history files. When one is found,

it is printed out. If there are several data sets with the same name in the history file, only the

first data set that is found is printed here.

PrintAverages.vabs file:

' Search in each history file for a node named "Average". If found, print it.

Sub Main

 For Each hf In HistoryFiles

 hf.Open

 Set hn = hf.FindNode("Average")

 If Not hn Is Nothing Then ' "Average" node found?

 hn.Show

 ' When the node is shown, at least one window is attached.

 hn.Windows(1).Print

 Wait 2

 End If

 hf.Close

 Next

End Sub

6.1.3. Renaming a history node in all history files

Let's assume you have carried out segmentation on the basis of two criteria, i.e. you have one

node named Segmentation and another named Segmentation2, for example. Then you

performed some operations until you came to the average. Your history file now contains two

different nodes with the same name – Average. You carried out the operation with 162 history

files, and would now like a grand average for the average derived from Segmentation 2. You

will find that this doesn't work! The Grand Average module only accepts one node name, for

example Average, and then uses the first node that it finds in the history file. Now you can

either create a history template from one of the files and rename the second Average as

Average 2 and then run the template, or rename the second average node in every existing

history file, or run the following macro:

18

RenameToAverage2.vabs file:

' Search for "Average" below "Segmentation 2" and rename it as "Average 2".

' This macro assumes that there is no branch below "Segmentation 2".

Sub Main

 Dim hf As HistoryFile

 Dim hn As HistoryNode

 For Each hf In HistoryFiles

 hf.Open

 Set hn = hf.FindNode("Segmentation 2")

 If Not hn Is Nothing Then ' "Segmentation 2" found?

 Dim nChildren As Long ' Check for children of node.

 Dim hn2 As HistoryNode

 Set hn2 = hn

 nChildren = hn2.HistoryNodes.Count

 If nChildren > 1 Then ' branch found.

 MsgBox "Branch found in " & hf.DisplayName & "!", "Warning"

 End If

 Do While nChildren > 0

 Set hn2 = hn2.HistoryNodes(1)

 If StrComp(hn2.Name, "Average", 1) = 0 Then ' Case-insensitive comparison.

 ' Rename it.

 hn2.Name = "Average 2"

 End If

 nChildren = hn2.HistoryNodes.Count

 If nChildren > 1 Then ' branch found.

 MsgBox "Branch found in " & hf.DisplayName & "!", "Warning"

 End If

 Loop

 End If

 hf.Close

 Next

End Sub

The macro shown above has one drawback. There must be no branches after Segmentation 2,

i.e. Segmentation 2 and every subsequent node is only allowed to have one child node. If that

is not the case, a warning is output and an Average node may be overlooked.

In order to take all branches into consideration, you can use the following macro which has a

somewhat more complicated structure. It operates with recursion, i.e. a function is defined

which calls itself. Information on the structure of functions is given in the "Tips for advanced

users" chapter. The FindSubNode function searches for a node with the specified name

beneath a specified node. It may also be of interest for other applications.

RenameToAverage2Rec.vabs file:

' Search for "Average" below "Segmentation 2" and rename it as "Average 2".

Sub Main

 Dim hf As HistoryFile

 Dim hn As HistoryNode

 For Each hf In HistoryFiles

 hf.Open

 Set hn = hf.FindNode("Segmentation 2")

 If Not hn Is Nothing Then ' "Segmentation 2" node found?

 Dim hnAverage As HistoryNode

 Set hnAverage = FindSubNode(hn, "Average")

 If Not hnAverage Is Nothing Then

 hnAverage.Name = "Average 2"

 End If

 End If

 hf.Close

 Next

End Sub

' This function searches recursively for a history node with the given name below the given

' node.

Function FindSubNode(hn As HistoryNode, sName As String) As HistoryNode

 Dim hnChild As HistoryNode

 For Each hnChild In hn.HistoryNodes

 If StrComp(hnChild.Name, sName, 1) = 0 Then ' Case-insensitive comparison.

Vision Analyzer Macro Cookbook 19

 Set FindSubNode = hnChild

 Exit Function

 End If

 Set FindSubNode = FindSubNode(hnChild, sName) ' Recursive call

 If Not FindSubNode Is Nothing Then ' Found?

 Exit Function

 End If

 Next

End Function

6.1.4. Exporting graphics to Winword with a report

The following macro copies the content of the current data window to the clipboard, launches

Microsoft Word 2000, copies the data into it and then leaves it up to you to carry out any

further manipulation.

CopyToWord.vabs file:

' Copy content of a window to the clipboard.

' and then paste it into a new Word document.

Sub Main

 If Not ActiveNode.DataAvailable Then

 MsgBox "This macro needs an open data window."

 Exit Sub

 End If

 Set hn = ActiveNode

 hn.Show ' Now it should be the active window.

 hn.Windows(1).Copy

 ' Word 97 must be on the machine.

 ' The following commands are Word commands.

 Set Word = CreateObject("Word.Application")

 Word.Visible = True

 Word.Documents.Add

 Word.Selection.TypeText hn.HistoryFile.DisplayName & "-" & hn.Name

 Word.Selection.TypeParagraph

 Word.Selection.Paste

End Sub

The smaller part of the macro comprises Analyzer commands, whereas the larger part

comprises Word Automation commands which we will not explain here. Please refer to

Microsoft's Word documentation for more details of that.

The CreateObject function is worth mentioning. It is used to start external applications and

control them remotely by means of OLE Automation. This applies to the Microsoft-Office

programs (Word, Excel, Powerpoint, Access, Outlook) and many more (Visio, SPSS etc.).

If you need a simple report for a data set, you can use the following macro. It also works with

Word 2000. Again, the Word application is controlled remotely from the macro. The macro

generates a new file which has the name of the current history file and the current data set.

The new file is stored in the Export folder of the current work space. You define the Export

folder in the Analyzer under File > Edit Workspace.

WordReport.vabs file:

' Copy content of the active window to the clipboard.

' Create a Word document.

' Write title.

' Paste clipboard content.

Sub Main

 On Error GoTo CheckError

 If Not ActiveNode.DataAvailable Then

 MsgBox "This macro needs an open data window."

 Exit Sub

 End If

20

 Set hn = ActiveNode

 hn.Windows(1).Copy ' When the active node has valid data it also has at

 ' least one attached window.

 ' Save new document in export folder.

 Dim sOutput As String

 ' Build output file name.

 sOutput = CurrentWorkspace.ExportFileFolder & "\" & hn.HistoryFile.DisplayName & _

 "-" & hn.Name & ".doc"

 ' MS Word 97 must be on the machine.

 ' The following commands are Word commands.

 ' Look at the Office documentation for the Word object model .

 Set WordDoc = CreateObject("Word.Document")

 WordDoc.Select

 Dim Sel As Object

 Set Sel = WordDoc.Application.Selection ' Reference Word selection object.

 ' Save current font.

 With Sel.Font

 OldBold = .Bold : OldName = .Name

 .Bold = True : .Name = "Arial"

 End With

 ' Write caption.

 Sel.TypeText hn.HistoryFile.DisplayName & "-" & hn.Name

 Sel.TypeParagraph

 ' Restore font

 With Sel.Font

 .Bold = OldBold : .Name = OldName

 End With

 Sel.Paste

 Sel.MoveEnd

 Sel.TypeParagraph

 WordDoc.SaveAs sOutput ' Save document.

 WordDoc.Close

 Exit Sub

CheckError:

 MsgBox Err.Description, vbExclamation, "Error"

End Sub

Vision Analyzer Macro Cookbook 21

6.2. Data manipulation

6.2.1. Removing, setting and renaming markers

Macros can remove markers and set new ones. A marker is renamed by removing a marker

and setting a new one at the same position.

The main use for marker manipulation is to prepare for special segmentation. Although the

Analyzer's segmentation module contains a very powerful method for intelligent segmentation

in the shape of Advanced Boolean Expression (ABE), it cannot allow for all conceivable

segmentation algorithms. Nevertheless you should check whether ABE is capable of solving

your problem before using a macro for this purpose.

Here is our first example. The first five stimuli in a data set are to be ignored, and then the

next 500 stimuli are to be included in averaging. To do this, the following macro simply

deletes all unrequired stimuli from the data set. An error message is output if there are not

enough stimuli in the data set.

500Stimuli.vabs file:

' Remove all stimulus markers from 1 to 5 and > 505.

' -> keep exactly 500 stimuli.

Sub Main

 Dim nhn As New NewHistoryNode

 nhn.Create "500 Stim", ActiveNode

 Dim Mks As Markers

 Dim mk As Marker

 Dim i As Long

 Set Mks = ActiveNode.Dataset.Markers

 For Each mk In Mks

 If mk.Type = "Stimulus" Then

 i = i + 1

 If i < 6 Or i > 505 Then

 nhn.RemoveMarker mk.ChannelNumber, mk.Position, mk.Points, mk.Type, _

 mk.Description

 End If

 End If

 Next

 If i < 505 Then ' Not enough markers?

 MsgBox i & " Markers in Dataset!", "Macro 500Stimuli"

 Exit Sub

 End If

 nhn.Finish

End Sub

If you only want to include every third stimulus marker named S 1 in averaging, you have

two ways of doing this.

1. Delete all other stimuli markers named S..1 from the data set, and then carry out

segmentation on the basis of the remaining stimuli.

2. Rename every third S..1 stimulus marker, and then carry out segmentation on the basis of

stimuli with the new name.

The ThirdS1a.vabs macro applies the first method:

' Search for "S 1" stimulus markers and erase them if they are not

' divisible by 3, i.e. keep every third stimulus marker "S 1".

Sub Main

 On Error GoTo CheckError

 Dim sDescription As String

 sDescription = "S 1" ' Change the string for a different stimulus, be careful with

 ' spaces in the name, "S 1" contains two spaces.

22

 Dim nhn As New NewHistoryNode

 nhn.Create "Third S1a", ActiveNode

 Dim Mks As Markers

 Set Mks = ActiveNode.Dataset.Markers

 Dim mk As Marker

 Dim i As Long

 For Each mk In Mks

 If mk.Type = "Stimulus" And mk.Description = sDescription Then

 i = i + 1

 If i Mod 3 Then ' Not divisible by 3?

 nhn.RemoveMarker 0, mk.Position, mk.Points, mk.Type, mk.Description

 End If

 End If

 Next

 nhn.Finish ' Finish creation.

 Exit Sub

CheckError: ' Error

 MsgBox Err.Description

End Sub

If you are confronted with a similar problem, you can change the sixth line to use a different

stimulus ("sDescription = ..."), and line number 17 ("if i Mod 3 then") to set a different

devisor.

The ThirdS1b.vabs macro applies the second method, i.e. it renames every third S 1 marker.

' Search for "S 1" stimulus markers and rename them if they are

' divisible by 3, i.e. rename every third stimulus marker "S 1" to "1000Hz".

Sub Main

 On Error GoTo CheckError

 Dim sDescription As String

 sDescription = "S 1" ' Change the string for a different stimulus, be careful with

 ' spaces in the name, "S 1" contains two spaces.

 Dim nhn As New NewHistoryNode

 nhn.Create "Third S1b", ActiveNode

 Dim Mks As Markers

 Set Mks = ActiveNode.Dataset.Markers

 Dim mk As Marker

 Dim i As Long

 For Each mk In Mks

 If mk.Type = "Stimulus" And mk.Description = sDescription Then

 i = i + 1

 If i Mod 3 = 0 Then ' Divisible by 3?

 ' Rename marker: remove / add

 nhn.RemoveMarker 0, mk.Position, mk.Points, mk.Type, mk.Description

 nhn.AddMarker 0, mk.Position, mk.Points, mk.Type, "1000Hz"

 End If

 End If

 Next

 nhn.Finish ' Finish creation.

 Exit Sub

CheckError: ' Error

 MsgBox Err.Description

End Sub

6.2.2. Generating new data

In the following macro, a new data set is generated as a child node of an existing one. This

contains the rectified data of the original data set. Since the data is not inherited, properties

and markers have to be set explicitly. They are copied from the original data set by means of

the CopyProperties and CopyMarkers procedures. Owing to their encapsulation, these

procedures can be transferred to other macros very easily.

Rectify Data.vabs file:

' Rectify data of the active node.

Sub Main

 If Not ActiveNode.DataAvailable Then

Vision Analyzer Macro Cookbook 23

 MsgBox "This macro needs an open data window."

 Exit Sub

 End If

 Dim ds As Dataset

 Set ds = ActiveNode.Dataset

 ' Limit operation to small data sets, i.e. Averages etc.

 If ds.Length > 10000 Then

 MsgBox "Data set contains " & ds.Length & _

 " data points (macro is limited to 10000 data points)."

 Exit Sub

 End If

 Dim nhn As New NewHistoryNode

 ' Create new data set.

 nhn.Create "Rectify", ActiveNode, "", False, ds.Type, ds.Channels.Count, ds.Length, _

 ds.SamplingInterval

 ' Description of operation (operation info)

 nhn.Description = "Rectify all channels"

 ' Copy properties.

 CopyProperties ds, nhn

 ' Copy markers.

 CopyMarkers ds, nhn

 ' Read / modify / write data

 Dim fData() As Single

 Dim Chs As Channels

 Set Chs = ds.Channels

 Dim ch As Channel

 For i = 1 To Chs.Count

 Set ch = Chs(i)

 ' Read

 ch.GetData 1, ds.Length, fData

 ' Modify

 For j = 1 To ds.Length

 fData(j) = Abs(fData(j))

 Next

 ' Write

 nhn.WriteData i, 1, ds.Length, fData

 Next

 nhn.Finish

End Sub

' Copy properties from source node to target node.

Sub CopyProperties(dsSrc As Dataset, nhnTarget As NewHistoryNode)

 Dim i As Long

 Dim Chs As Channels

 Set Chs = dsSrc.Channels

 Dim ch As Channel

 For i = 1 To Chs.Count

 Set ch = Chs(i)

 nhnTarget.SetChannelName i, ch.Name

 nhnTarget.SetRefChannelName i, ch.ReferenceChannel

 nhnTarget.SetChannelUnit i, ch.Unit

 Dim pos As ChannelPosition

 Set pos = ch.Position

 nhnTarget.SetChannelPosition i, pos.Radius, pos.Theta, pos.Phi

 Next

 nhnTarget.SegmentationType = dsSrc.SegmentationType

 nhnTarget.Averaged = dsSrc.Averaged

End Sub

' Copy markers from source node to target node.

Sub CopyMarkers(dsSrc As Dataset, nhnTarget As NewHistoryNode)

 Dim mk As Marker

 Dim Mks As Markers

 Set Mks = dsSrc.Markers

 For Each mk In Mks

 nhnTarget.AddMarker mk.ChannelNumber, mk.Position, mk.Points, _

 mk.Type, mk.Description, mk.Invisible

 Next

End Sub

24

The following macro creates a new secondary history file containing all FP1 channels of all

Average nodes of the primary history files in the current workspace.

Collect FP1.vabs file:

' Look in each primary history file for history node "Average" with channel "Fp1".

' If the node and the channel exist, add the channel to a new secondary

' history file called "Collect Fp1", history node "Fp1".

Option Explicit

Sub Main

 Dim sFiles() As String ' Container for valid history file names.

 Dim hf As HistoryFile

 Dim hn As HistoryNode

 Dim nCount As Long, nLength As Long, nType As Long

 Dim fSamplingInterval As Double

 ' First count number of files that match the criteria.

 For Each hf In HistoryFiles

 If hf.LinkedData Then ' Primary history file?

 hf.Open

 Set hn = hf.FindNode("Average")

 If Not hn Is Nothing Then

 If Not hn.Dataset("Fp1") Is Nothing Then

 If nCount = 0 Then ' Use first data set length as reference

 nLength = hn.Dataset.Length

 nType = hn.Dataset.Type

 fSamplingInterval = hn.Dataset.SamplingInterval

 End If

 ' Only data sets with the same length.

 If nLength = hn.Dataset.Length Then

 nCount = nCount + 1

 ReDim Preserve sFiles(1 To nCount) ' Resize container of names.

 sFiles(nCount) = hf.DisplayName

 End If

 End If

 End If

 hf.Close

 End If

 Next

 ' Now we know the number of channels for the new history node.

 Dim nhn As New NewHistoryNode

 HistoryFiles.KillFile "Collect Fp1" ' Kill secondary history file if it exists.

 ' Create a new history file called "Collect Fp1" with the node "Fp1"

 nhn.Create "Fp1", Nothing, "Collect Fp1", False, nType, nCount, nLength, fSamplingInterval

 Dim i As Long

 Dim fData() As Single

 For i = 1 To nCount

 nhn.SetChannelName i, sFiles(i) & "-Fp1" ' Set name of new channel

 ' Copy data.

 Set hf = HistoryFiles(sFiles(i))

 hf.Open

 Set hn = hf.FindNode("Average")

 Dim ch As Channel

 Set ch = hn.Dataset("Fp1")

 ch.GetData 1, nLength, fData

 nhn.WriteData i, 1, nLength, fData

 hf.Close

 Next

 nhn.Finish

End Sub

6.2.3. Reading in stimulator data from external files

The following macro reads stimulus/response data from a text file. It is assumed that the

associated stimulus markers exist in the EEG. The correctness of the response serves as

information for renaming the stimulus markers. A "-c" or "-i" is added to the marker

descriptions, depending on whether the response was correct or incorrect.

The text file contains five columns of numbers separated by blanks. The first column contains

the ordinal number of the stimuli, and the fourth column contains information on the

Vision Analyzer Macro Cookbook 25

correctness of the response – where 0 stands for incorrect and 1 for correct. The other

columns are ignored. If a line begins with a non-numeric character (except space), it is

skipped. Leading spaces in the lines are ignored.

Example of a line:

12 0 0 1 0

Here we have the 12th stimulus (column 1) and the response is correct (column 4). Stimulus

files with this structure are relatively frequent. If your files have a different structure, you can

adjust the macro easily.

The stimulus info file must be located in the raw data folder of the current workspace. Its base

name corresponds to the base name of the associated EEG file. The file name extension is

".stm". Example:

Raw EEG: E0000001.eeg, associated stimulus info file: E0000001.stm.

This naming convention makes it possible to automate the reading in of response data into

templates.

ReadResponses.vabs file:

' This macro reads stimulus / response information from a text file.

' It is assumed that the stimuli are also recorded in the EEG.

' The correctness of the response is used to rename the stimulus markers.

' A marker's description is expanded with "-c" if the response is correct and with

' "-i" if it is incorrect.

' The text file contains five columns of numbers:

' The first column contains the stimulus number, the fourth column the correctness where

' 1 indicates "correct" and 0 indicates "incorrect". The other columns are ignored. If

' a line starts with a non-digit character, the line is skipped. Leading spaces are ignored.

' The file must be in the raw data folder and have the extension ".stm". Its base name must

' be the same as the base name of the raw EEG file. For example when the raw file is called

' "E0000001.eeg" the name of the corresponding stimulus information file is "E0000001.stm".

Const sExtension As String = ".stm" ' Extension of stimulus information file.

 ' Change if your info files have a different extension.

Sub Main

 If Not ActiveNode.DataAvailable Then

 MsgBox "This macro needs an open data window."

 Exit Sub

 End If

 Dim sFolder As String ' Folder / directory of stimulus information file.

 ' Set folder (directory) of the stimulus information file to the raw file folder.

 ' Change the following line if your info files are located in a different folder.

 sFolder = CurrentWorkspace.RawFileFolder

 ' Build the full file name

 Dim sStimFile As String

 sStimFile = sFolder & "\" & ActiveNode.HistoryFile.Name & sExtension

 Dim nFile As Integer

 nFile = FreeFile ' Get a free file handle number.

 Open sStimFile For Input As nFile ' Open stimulus info file

 Dim tblCorrectness() As Long ' Array of correctness flags

 Dim nStimCount As Long ' Number of items of stimulus info in the stim. info file

 ' Read in lines and fill tblCorrectness array.

 Do Until EOF(nFile)

 Dim sLine As String

 Line Input #nFile, sLine

 sLine = Trim(sLine) ' Remove leading spaces.

 ' Check whether the first character is a number.

 If IsNumeric(Left(sLine, 1)) Then

 ' Retrieve the different numbers.

 Dim cols(1 To 5) As Single ' Array of numbers for each column.

 Dim i As Long, nPos As Long, nStim As Long, nCorrectness As Long

 For i = 1 To 5

 nPos = InStr(sLine, " ")

26

 If nPos > 0 Then

 cols(i) = CSng(Left(sLine, nPos - 1))

 sLine = LTrim(Mid(sLine, nPos))

 else

 cols(i) = CSng(sLine)

 End If

 Next

 nStim = CLng(cols(1)) ' Stimulus number is in column 1.

 ' Handle ascending, descending and no order of stimuli.

 If nStim > nStimCount Then

 ReDim Preserve tblCorrectness(1 To nStim)

 nStimCount = nStim

 End If

 tblCorrectness(nStim) = CLng(cols(4)) ' Correctness flag is in column 4.

 End If

 Loop

 Close nFile

 ' Now we have all the information we need to set the stimulus markers.

 Dim nhn As New NewHistoryNode

 nhn.Create "Correctness", ActiveNode

 Dim Mks As Markers

 Dim mk As Marker

 Set Mks = ActiveNode.Dataset.Markers

 Dim nStimuliFound As Long, nCorrectResponses As Long, nIncorrectResponses As Long

 For Each mk In Mks

 If mk.Type = "Stimulus" Then

 nStimuliFound = nStimuliFound + 1

 ' Leave loop if no more entries are in tblCorrectness.

 If nStimuliFound = nStimCount Then Exit For

 Dim sDescription As String

 sDescription = mk.Description

 If tblCorrectness(nStimuliFound) > 0 Then ' Correct response?

 sDescription = sDescription & "-c"

 nCorrectResponses = nCorrectResponses + 1

 Else

 sDescription = sDescription & "-i"

 nIncorrectResponses = nIncorrectResponses + 1

 End If

 ' Call procedure to rename the marker.

 RenameMarkerDescription mk, nhn, sDescription

 End If

 Next

 ' Write descriptions for operation info.

 ' Operation, inherited by templates

 nhn.Description = "Checked responses for correctness and coded stimulus markers with " & _

 "'-c' (correct) or '-i' (incorrect)" & vbCrLf & vbCrLf

 ' Operation results, not inherited by templates

 nhn.Description2 = "Correct responses found: " & nCorrectResponses & vbCrLf & _

 "Incorrect responses found: " & nIncorrectResponses

 nhn.Finish

End Sub

' It is not possible to rename a marker description directly. This procedure does

' this by removing a marker, and then adding a new one.

Sub RenameMarkerDescription(mk As Marker, nhn As NewHistoryNode, sNewDescription As String)

 With mk

 nhn.RemoveMarker .ChannelNumber, .Position, .Points, .Type, .Description

 nhn.AddMarker .ChannelNumber, .Position, .Points, .Type, sNewDescription

 End With

End Sub

6.2.4. Reading in channel positions from external files

The following macro reads in electrode positions from a position file and sets them in a new

data set.

The position file has the following line format:

Vision Analyzer Macro Cookbook 27

<Electrode Name>, <Radius>, <Theta>, <Phi>

Example:

Fp1,1,-92,-72

Fp2,1,92,72

Lines starting with the comment character (#) are skipped.

Please refer to the user manual for the exact definition of electrode positions as used in the

Analyzer.

The position file must be located in the raw data folder of the current workspace. Its base

name corresponds to the base name of the associated EEG file. The file name extension is

".pos". Example:

Raw EEG: E0000001.eeg, associated position file: E0000001.pos.

ReadPositions.vabs file:

' This macro reads electrode positions from a text file.

' The text file has the following line format

' (of course without the leading comment character "'"):

' <Electrode Name>,<Radius>,<Theta>,<Phi>

' Example:

'

' Fp1,1,-92,-72

' Fp2,1,92,72

'

' The file must be in the raw data folder and have the extension ".pos". Its base name must

' be the same as the base name of the raw EEG file. For example, when the raw file is named

' "E0000001.eeg" the name of the corresponding position file is "E0000001.pos".

Option Explicit

Const sExtension As String = ".pos" ' Extension of electrode position file.

 ' Change if your info files have a different extension.

Sub Main

 If Not ActiveNode.DataAvailable Then

 MsgBox "This macro needs an open data window."

 Exit Sub

 End If

 Dim sFolder As String ' Folder / directory of stimulus information file.

 ' Set folder (directory) of the position file to the raw file folder.

 ' Change the following line if your position files are located in a different folder.

 sFolder = CurrentWorkspace.RawFileFolder

 ' Build the full file name

 Dim sPosFile As String

 sPosFile = sFolder & "\" & ActiveNode.HistoryFile.Name & sExtension

 Dim nFile As Integer

 nFile = FreeFile ' Get a free file handle number.

 Open sPosFile For Input As nFile ' Open position info file

 ' Create new node.

 Dim nhn As New NewHistoryNode

 nhn.Create "Read Pos", ActiveNode

 ' Read in lines.

 Do Until EOF(nFile)

 Dim sLine As String

 Line Input #nFile, sLine

 sLine = Trim(sLine) ' Remove leading spaces.

 ' Check whether the first character is a comment character.

 If Not Left(sLine, 1) = "#" Then ' No comment?

 ' Retrieve the different columns.

 Dim cols(1 To 4) As String ' Array of strings for each column.

 Dim i As Long, nChannel As Long, nPos As Long

 For i = 1 To 4

 nPos = InStr(sLine, ",")

 If nPos > 0 Then

 cols(i) = Left(sLine, nPos - 1)

28

 sLine = LTrim(Mid(sLine, nPos + 1))

 Else

 cols(i) = sLine

 End If

 Next

 ' Do we have a corresponding channel in the data set?

 nChannel = GetChannelIndex(ActiveNode, cols(1))

 If nChannel > 0 Then

 nhn.SetChannelPosition nChannel, CLng(cols(2)), CLng(cols(3)), _

 CLng(cols(4))

 End If

 End If

 Loop

 Close nFile

 ' Write descriptions for operation info.

 ' Operation, inherited by templates

 nhn.Description = "Read electrode positions from external file." & vbCrLf & vbCrLf

 ' Operation results, not inherited by templates

 nhn.Description2 = "Position info file: " & sPosFile & vbCrLf

 nhn.Finish

End Sub

' Get the index of the channel that matches the given label in the given history node.

Function GetChannelIndex(hn As HistoryNode, sLabel As String) As Long

 Dim Chs As Channels

 Dim ch As Channel

 Set Chs = hn.Dataset.Channels

 Dim i As Long

 For i = 1 To Chs.Count

 If StrComp(Chs(i).Name, sLabel, 1) = 0 Then ' Found?

 GetChannelIndex = i

 Exit Function

 End If

 Next

End Function

A modified version of this macro – named ReadPosXYZ.vabs – reads coordinates in XYZ

format and converts them to the internal coordinate system.

Vision Analyzer Macro Cookbook 29

6.2.5. Exporting frequency data to an ASCII file

The following macro exports the alpha band, which is defined here as ranging from 7.5 to

12.5 hertz, from the currently displayed frequency data set. All values in this range are ex-

ported. It will not take much effort to export just the average instead. The macro automatically

checks whether there is any complex frequency data. In this case, the absolute values are

exported.

The macro generates a new file based on the name of the current history file and the current

data set. The new file is stored in the Export folder of the current workspace. You define the

Export folder in the Analyzer under File > Edit Workspace.

ExportAlpha.vabs file:

' Export a frequency interval to an ASCII file.

Option Explicit

' Define band:

Const fIntervalStart = 7.5 ' Start in hertz

Const fIntervalLength = 5 ' Length in hertz

Sub Main

 If Not ActiveNode.DataAvailable Then

 MsgBox "This macro needs an open data window."

 Exit Sub

 End If

 Dim ds As Dataset

 Set ds = ActiveNode.Dataset

 If ds.Type <> viDtFrequencyDomain And ds.Type <> viDtFrequencyDomainComplex Then

 MsgBox "This macro expects data in the frequency domain."

 Exit Sub

 End If

 ' Build file name based on the export folder, the history file and the history node.

 Dim sFilename As String

 sFilename = CurrentWorkspace.ExportFileFolder & "\" & ActiveNode.HistoryFile.DisplayName _

 & "_" & ActiveNode.Name & "_Alpha.txt"

 ' Check for the interval.

 Dim nFirstPoint As Long, nPoints As Long

 ' First data point

 nFirstPoint = fIntervalStart / ds.SamplingInterval + 1

 nPoints = fIntervalLength / ds.SamplingInterval

 If nFirstPoint + nPoints - 1 > ds.Length Then ' Out of range?

 MsgBox "The requested interval is out of range."

 Exit Sub

 End If

 Dim nFile As Long ' File handle

 nFile = FreeFile

 ' Create output file.

 Open sFilename For Output As nFile

 Dim ch As Channel

 For Each ch In ds.Channels

 ' Write channel names first.

 Print #nFile, ch.Name;

 Dim fData() As Single

 ch.GetData nFirstPoint, nPoints, fData

 Dim i As Long

 Dim fValue As Single

 For i = 1 To nPoints

 ' Complex data ? -> convert.

 If ds.Type = viDtFrequencyDomainComplex Then

 ' fData() contains nPoints * 2 values if complex

 fValue = Sqr(fData((i - 1) * 2 + 1)^2 + fData((i - 1) * 2 + 2)^2)

 Else

 fValue = fData(i)

 End If

 Print #nFile, " " & fValue;

 Next

 Print #nFile ' CrLf

30

 Next

 Close nFile

End Sub

If you want to use this macro in a history file in order to export the alpha band automatically

again and again, you can apply the following trick. Insert the statements to create a new

history node between the last two lines. This node merely acts as a home for the macro but

does not change anything regarding the data.

ExportAlpa2.vabs file:

 Close nFile

 ' Build a new data set as home of the macro. This allows the macro to be used

 ' in a history template.

 Dim nhn As New NewHistoryNode

 nhn.Create "Export Alpha", ActiveNode

 nhn.Description = "Export Alpha Band" & vbCrLf

 nhn.Description2 = "Exported to '" & sFilename & "'"

 nhn.Finish

End Sub

Vision Analyzer Macro Cookbook 31

6.3. Dynamic parameterization

Some transforms can be called via the Transformation object. We talk about dynamic

parameterization because the macro can calculate and pass the parameters for transforms,

e.g. based on the result of an FFT and the like, at run time.

The list of transforms that you can call with a macro, together with their parameter syntax, is

given in the “Callable transforms” chapter of the OLE Automation Reference Manual.

The advantages of dynamic parameterization using existing transforms compared with

complete implementation of algorithms in the macro are:

• Algorithms do not have to be developed.

• Data is calculated much faster. Raw data can also be transformed fast.

• The space required in the history file is normally slight because most transforms do not

calculate their data until requested and do not store it in the history file.

The combination of macros and the Formula Evaluator transform provides some very

interesting options. You could, for instance, calculate new channels from existing ones and

use the actual measured channel positions instead of standard positions.

The following example uses the Filter transform. Here, raw data based on an FFT evaluation

is to be filtered in the alpha band with a bandpass. First, the following transform sequence,

which is also based on raw data, is carried out: Segmentation, Artifact Rejection, FFT,

Average.

Now the frequency in the alpha band of the O1 channel that has the strongest amplitude is to

be used for bandpass filtering (+/-3 Hz) of all channels in the raw data set. The following

figure shows the relationship between nodes.

Fig. 6-1: Relationship between nodes

The macro generates the Alpha Band Filter node based on an analysis of the Average Node.

You will find the Transformation.TryLater call in the macro. This should be used when data

is needed from a side-branch of the history tree. It is possible that the Alpha Band Filter

branch is calculated first when this tree is used in a history template. In this case the FFT data

is missing, though. TryLater causes the template processor to carry on with the next branch

and to try to calculate the Alpha Band Filter node again later. If this fails again although no

new nodes can be calculated, the template processor gives up.

32

DynParameterization.vabs file:

' Example for Dynamic Parameterization

' This macro looks for a history node 'Average' that contains an averaged FFT.

' If found, it looks in the Alpha band for the maximum amplitude in channel "O1".

' Then it uses the frequency at the maximum amplitude as input parameter for

' a bandpass (+/-3Hz) to filter the active data set with the 'Filters' transformation.

Option Explicit

' Define band:

Const fIntervalStart = 7.5 ' Start in Hertz

Const fIntervalLength = 5 ' Length in Hertz

Const fBandwidth = 6 ' Bandwidth (+/-3Hz)

Const sTestChannel = "O1" ' Test channel, i.e. channel where the Alpha band is checked.

Sub Main

 If Not ActiveNode.DataAvailable Then

 MsgBox "This macro needs an open data window."

 Exit Sub

 End If

 On Error Resume Next

 ' Look for node 'Average' that is in frequency domain

 Dim FFTAverageNode As HistoryNode

 Set FFTAverageNode = ActiveNode.HistoryFile.FindNode("Average")

 Do

 ' No more history node? -> try later if in template mode.

 If FFTAverageNode Is Nothing Then

 Transformation.TryLater

 ' If the macro has not terminated here, we are not in template mode.

 MsgBox "Missing history node 'Average' (FFT average)"

 Exit Sub

 End If

 Dim ds As Dataset

 Set ds = FFTAverageNode.Dataset

 ' Frequency domain?

 If ds.Type = viDtFrequencyDomain Or ds.Type = viDtFrequencyDomainComplex Then

 Exit Do

 End If

 ' Not frequency domain? -> Look for the next history node with the same name.

 Set FFTAverageNode = ActiveNode.HistoryFile.FindNextNode

 Loop

 ' Now we have our averaged FFT history node.

 ' Lets get the data from the test channel.

 Dim ch As Channel

 Set ch = ds(sTestChannel)

 If ch Is Nothing Then

 Message "Missing test channel '" & sTestChannel & "'"

 Exit Sub

 End If

 ' Check for the interval.

 Dim nFirstPoint As Long, nPoints As Long

 nFirstPoint = fIntervalStart / ds.SamplingInterval + 1

 nPoints = fIntervalLength / ds.SamplingInterval

 If nFirstPoint + nPoints - 1 > ds.Length Then ' Out of range?

 Message "The requested interval is out of range."

 Exit Sub

 End If

 ' Look for maximum value in the defined interval.

 Dim fData() As Single

 ch.GetData nFirstPoint, nPoints, fData

 Dim i As Long

 Dim fValue As Single, fMax As Single

 Dim nMaxPosition As Long

 fMax = -1

 nMaxPosition = 0

 For i = 1 To nPoints

 ' Complex data ? -> convert.

 If ds.Type = viDtFrequencyDomainComplex Then

 ' fData() contains nPoints * 2 values if complex

 fValue = Sqr(fData((i - 1) * 2 + 1)^2 + fData((i - 1) * 2 + 2)^2)

 Else

 fValue = fData(i)

Vision Analyzer Macro Cookbook 33

 End If

 If fValue > fMax Then ' New maximum found?

 fMax = fValue

 nMaxPosition = i - 1

 End If

 Next

 ' Convert position to frequency

 Dim fFrequency As Single

 fFrequency = (nFirstPoint + nMaxPosition - 1) * ds.SamplingInterval

 ' Build parameter string

 Dim sParameters As String

 sParameters = "Lowcutoff=" & SingleToString(fFrequency - fBandWidth / 2) _

 & ",24;highcutoff=" & SingleToString(fFrequency + fBandWidth / 2) & ",24"

 ' Perform the transformation

 Transformation.Do "Filters", sParameters, ActiveNode, "Alpha Band Filter"

 Exit Sub

CheckError:

 Resume Next

End Sub

' The function converts a single value to a string. In opposite to 'Str' the decimal delimeter

' is always a dot ('.'), even in European countries.

Function SingleToString(fValue As Single) As String

 SingleToString = Replace(Str(fValue), ",", ".")

End Function

34

7. Tips for advanced users

7.1. Declaring variables

As mentioned in the "Quick tour of Basic" chapter, you have the option of declaring variables

explicitly:

Dim fData as Single

You can make it compulsory to declare variables, though. You do this by means of the

following statement:

Option Explicit

You have to insert this statement as the first line of the macro, above Sub Main. In this case

you get an error message when you try to run the macro and it uses undeclared variables. The

advantage of this is that it is no longer possible to make typing mistakes in variable names

which otherwise would have caused variables to be created implicitly.

Example:

Dim fValue as Single

fValue = 1

fValue = fVolue + 1

Here we wrote fVolue + 1 in the last line instead of fValue + 1. If Option Explicit is not

specified, no error message is output. There would simply be the wrong result as fVolue is

created implicitly and set to 0.

Such errors are extremely hard to find in larger macros so it is generally worth using Option

Explicit there.

Vision Analyzer Macro Cookbook 35

7.2. User-defined dialog boxes

In addition to the input and output facilities provided by InputBox and MsgBox, you can also

create more complex dialog boxes. To do this, create a new macro with Macro > New, and

then select Edit > User Dialog. A dialog appears enabling you to create a dialog template.

Fig. 7-1: Dialog template editor

Click on the following icon.

Now click on the dotted area to the right of that icon. This creates a text box with the text

".TextBox1".

Repeat the action with the following icon.

Your dialog should now contain a text box and an OK button. You can change the position

and size of the elements, including the dialog box itself, with the mouse. Click the following

button:

This takes you back to the text editor. The program has automatically inserted the code for the

dialog. It looks something like this:

Sub Main

 Begin Dialog UserDialog 400,203 ' %GRID:10,7,1,1

 TextBox 70,49,270,21,.TextBox1

 OKButton 110,112,90,21

 End Dialog

 Dim dlg As UserDialog

 Dialog dlg

End Sub

36

If you now run the macro, a dialog appears with the text box and the OK button. You can

input text and press the OK button.

But how do you get to the text that has been input? Very easily. The automatically declared

variable dlg is an object which has the TextBox1 property, so dlg.TextBox1 provides the text

as the following extended macro shows:

Sub Main

 Begin Dialog UserDialog 400,203 ' %GRID:10,7,1,1

 TextBox 70,49,270,21,.TextBox1

 OKButton 110,112,90,21

 End Dialog

 Dim dlg As UserDialog

 Dialog dlg ' Start dialog.

 MsgBox dlg.TextBox1 ' Show user input.

End Sub

The MsgBox dlg.TextBox1 line outputs the text that has been input.

You can also predefine a text which the user can overwrite if necessary. To do this, assign a

text to dlg.TextBox1 before the dialog is displayed:

Sub Main

 Begin Dialog UserDialog 400,203 ' %GRID:10,7,1,1

 TextBox 70,49,270,21,.TextBox1

 OKButton 110,112,90,21

 End Dialog

 Dim dlg As UserDialog

 dlg.TextBox1 = "Hello world" ' Assign default text.

 Dialog dlg ' Start dialog.

 MsgBox dlg.TextBox1 ' Show user input.

End Sub

If you want to extend or modify the dialog, move the cursor between Begin Dialog ... and End

Dialog, and then select Edit > User Dialog again. Then you can insert other elements in the

dialog, such as pictures, radio buttons, list boxes and much more besides. Press the F1 key to

look up information on the various elements of the dialog editor.

After closing the dialog editor you can look up further information on the options of the user-

defined dialog in the online Help.

Vision Analyzer Macro Cookbook 37

7.3. Functions / procedures

You can define your own functions and procedures to make a macro clearer or shorten it.

The prestimulus interval is output in the following example. To do this, the FindTimeZero

function searches for a marker of the Time 0 type and returns its position.

' Print time 0 of the active node.

Sub Main

 If Not ActiveNode.ContainsData Then

 MsgBox "No active node found."

 Exit Sub

 End If

 Dim ds As Dataset

 Set ds = ActiveNode.Dataset

 ' Sampling interval is in microseconds -> convert to ms.

 MsgBox "Prestimulus: " & (FindTimeZero(ds) - 1) * ds.SamplingInterval / 1e3 & "ms"

End Sub

' Find position of time 0 marker (prestimulus interval length)

Function FindTimeZero(ds As Dataset) As Long

 Dim mk As Marker

 FindTimeZero = 1

 For Each mk In ds.Markers

 ' Case insensitive comparison.

 If StrComp(mk.Type, "Time 0", 1) = 0 Then

 FindTimeZero = mk.Position

 Exit Function

 End If

 Next

End Function

The following example defines the RenameMarkerDescription procedure which changes the

description of a marker.

' Rename all stimulus markers with the description "S 1" as "Hand".

Sub Main

 Dim nhn As New NewHistoryNode

 nhn.Create "S1->Hand", ActiveNode

 Dim Markers As Markers

 Dim mk As Marker

 Set Markers = ActiveNode.Dataset.Markers

 For Each mk In Markers

 If mk.Type = "Stimulus" And mk.Description = "S 1" Then

 RenameMarkerDescription mk, nhn, "Hand"

 End If

 Next Mk

 nhn.Finish

End Sub

' It is not possible to rename a marker description directly. This procedure does

' this by removing a marker, and then adding a new one.

Sub RenameMarkerDescription(mk As Marker, nhn As NewHistoryNode, NewDescription As String)

 nhn.RemoveMarker mk.ChannelNumber, mk.Position, mk.Points, mk.Type, mk.Description

 nhn.AddMarker mk.ChannelNumber, mk.Position, mk.Points, mk.Type, NewDescription

End Sub

38

7.4. Suppression of dialogs in history templates

If you want to accept input parameters from the user, in a similar way that the Analyzer does

in most transforms, when he or she calls the macro directly but not when the macro is stored

in a history template, you can use the new property named NewHistoryNode.Description to

store the parameters. If a new NewHistoryNode object is generated when a macro is called,

Description is empty but it is filled in the template context with the text that you defined

when running the macro. You can thus save user inputs in Description. After creating the new

node with NewHistoryNode.Create(), check whether Description is empty. If so, get the user

to make an input. Otherwise you are in the template context and evaluate Description. The

following example illustrates the procedure.

File RenameMarkersInteractive.vabs

' Rename markers

' User input for old/new name, skipped input in template processing

Sub Main

 If Not ActiveNode.DataAvailable Then

 MsgBox "This macro needs an open data window."

 Exit Sub

 End If

 Dim nhn As New NewHistoryNode

 Dim sOldName As String, sNewName As String

 nhn.Create "Renamed Markers", ActiveNode

 If nhn.Description = "" Then ' Interactive mode

 sOldName = InputBox("Enter markers name", "Rename Markers")

 sNewName = InputBox("Enter new name", "Rename Markers")

 nhn.Description = "Rename Markers" & vbCrLf & "Old name: " & sOldName & _

 vbCrLf & "New name: " & sNewName

 Else ' Template mode

 ' Retrieve names from description text

 Dim nPos As Integer, sTemp As String

 sTemp = nhn.Description

 nPos = InStr(sTemp, "Old name: ")

 If nPos > 0 Then

 sTemp = Mid(sTemp, nPos + Len("Old name: "))

 nPos = InStr(sTemp, vbCrLf)

 sOldName = Left(sTemp, nPos - 1)

 sNewName = Mid(sTemp, nPos + 2 + Len("New name: "))

 End If

 End If

 If sOldName = "" Then

 MsgBox "Missing old name"

 Exit Sub

 ElseIf sNewName = "" Then

 MsgBox "Missing new name"

 Exit Sub

 End If

 Dim Markers As Markers

 Dim mk As Marker

 Set Markers = ActiveNode.Dataset.Markers

 For Each mk In Markers

 If mk.Description = sOldName Then

 RenameMarkerDescription mk, nhn, sNewName

 End If

 Next Mk

 nhn.Finish

End Sub

...

Vision Analyzer Macro Cookbook 39

7.5. Debugging

Debugging means searching for errors in a macro and eliminating them. In addition to

inspecting the macro code visually, you can also run through the macro line by line, look up

values of variables at any time, and set break points at which the macro will pause.

We will demonstrate these steps on the basis of the following example:

Sub Main

 i = 1

 i = i + 1

 MsgBox i

End Sub

Type in the macro and then press the F8 key. The window is split into an upper and lower

area. At the top there are four tabs with the following titles: Immediate, Watch, Stack and

Loaded. In this demonstration we are only interested in the Immediate tab. The first line of the

macro is marked yellow. This mark indicates the current macro line. Now press the F8 key

two more times. The mark has moved to the third line (i = i + 1). Now click in the Immediate

window and input the following:

? i

Follow that by pressing the Enter key. 1% appears. % stands for an integer. The most

important thing is that you can read out the content of variables. Now press the F8 key and

look up the value of i again. The value 2% appears now. If you do not need to know more,

press the F5 key and the program will run through to the end.

To set a break point, move the cursor to the fourth line, for example, and press the F9 key.

The line is highlighted in dark red. Now start the macro with F5. It stops in the fourth line.

Pressing F5 again causes execution of the macro to resume.

We just went through the debugging session using function keys. You can use the Macro and

Debug menus and their submenus instead. The toolbar also provides these commands, but the

fastest way is to use function keys.

Incidentally, it is not only the values of variables that you can look up. You can also search

through the Analyzer and send commands. To do this, select View > Always Split. Now the

window is split even when no macro is running. Click in the Immediate window and type

? HistoryFiles(1).Name

and then press the Enter key. The name of your first history file appears.

Entering HistoryFiles(1).Open will open the file, and HistoryFiles(1).Close will close it. This

means you can test the effect of the various automation constructions interactively here.

More information on debugging is given in the Online Help.

